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Soccer games, respectively their video records, are an issue of extensive challenging
research in image sequence processing. Topics of particular interest are player and field
tracking. In this paper we will do an important step in this direction with a new
approach to detect players and field lines in monocular TV video data. To achieve this
goal, the field area and the grass colors are to be determined. This is done by involving
contextual knowledge as well as a new method for color segmentation, which frame
wise selects polyhedrons within the RGB cube. As an addition, the resulting algorithms
are able to detect non field view images and work in real time.

Introduction

In this paper we show how robust field area
and color detection can assist in the automatic
real time analysis of soccer game videos. Our
approach overcomes special challenges like
multiple colored areas (e.g. due to bad weather
conditions) or field color regions beyond the
field. Furthermore the presented concepts are
adaptable to other field based sport games.

The remainder of the paper is structured as
follows; after discussing related work in
section two, the novel algorithms are presented
in sections three to five. Afterwards the results
are shown in comparison with ground truth
data in section six. The last section will give a
conclusion and show possible applications.

Related Work

While Lu et al. [1] are using a computation
time intensive edge matching approach for the
field recognition, the usual approach for this
fundamental step is color based. Often a
simple pre-defined color with thresholds, e.g.
Tong et al. [2] and Utsumi et al. [3], or peaks
in a certain color space, e.g. Choi et al. [4],
Ekin et al. [5] and Yu et al. [6], are used. The
ASpoGAMo approach [7] is based on a
Gaussian mixture model, but only able to
detect single field color peaks automatically.
Learned models, e.g. Huang et al. [§8], can

show weaknesses in bad image conditions.
Mostly, the field is afterwards determined
directly from points with the selected color
key or using a region growing method as
motivated by Yu et al. [6]. Beside the
assumptions of field color hue and big field
area, the usage of contextual knowledge is
either low or not real time capable ([1]). In
contrast, our system overcomes these
weaknesses and is specified in the special
context of soccer games, but yet adaptable
under certain circumstances.

Field hull determination

Fig. 1. The polyhedral field hull (yellow) with point
naming. (Source: Mitteldeutscher Rundfunk)

To retrieve a polygonal hull (see fig. 1) we
need two basic assumptions: the field is a
rectangle, lying on the ground with the camera
standing next to it, the lens directed on one of
its inner points and a focal length resulting in



568

an image that is mostly covered by the
described field. The second assumption is that
the field is green?. The field hull determination
heuristic consists of the following steps:

1. Creation of binary hue mask H (HSV)
through thresholding

2. Morphological selective opening of H:

a. Erosion by a square (20px)

b. Retrieve connected components

c. Delete all components which
are not the biggest one

d. Dilate by a square (20px)

e. Name the result as H’

3. Calculate contour C and smallest
surrounding rectangle W parallel to the
coordinate axes of H'

4. Six point polygon hull determination
Step 4 has to be discussed in more detail. The
six points are arranged according to fig. 1. We
start with point 1: This is, colloquially spoken,
the topmost point where the field hull leaves
the left line segment of W. The y-coordinate is
determined by using the median height of five
topmost vertical scan line intersections with C.
The scan lines start from the left of W and are
equidistant. The x-coordinate lies on the left of
W. The same procedure is repeated mirrored
for point 3. A temporary polygon T is now
constructible, containing the points 1 and 3
and the bottom points of W. The next point in
the processing order is the top point 2. Starting
from the topmost point in C an optimization
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in a neighborhood of p is performed while
Fill(T U {p}) has to be convex!

The optimal p is added to T, which now
contains three fixed points (1, 2 and 3). We
propose to wuse this pentagon and cut
everything beneath a line off so that the error
region (Fill(T) A H') is minimized. To reduce
the number of line candidates, a small number
of vertical scan lines can be chosen and
intersected with the error region. All
combination of two either top- or bottommost
points within the connected components of the
result can compose the line candidates.

Putting everything together the field hull is
now complete. Results and quality evaluation
are shown in section six.

21 We used a hue value between 63° and 113°
(HSV) within our test cases.

Selecting field colors

The calculated hull allows an efficient and
sophisticated grass color estimation by
calculating an area within the RGB cube with
the field describing colors. Because soccer
games, like many other field games, are played
on ground of uniform color, it is possible to
speed up the estimation process drastically. As
stated in [2], the intensity itself is unfeasible
for the color detection. However, due to strong
dependence of the color channels at field
points (correlation in homogenous colored
data), working on intensity images within the
field regions offers a big complexity reduction
combined with small and measurable data loss.
This statement applies also in challenging
conditions like shady or sodden environments.
For simplicity, we useV = %(R + G+ B).
The key task is to find the position of the color
describing line in the RGB cube, select the
appropriate segments and inflate the line in
each axis by an automatically determined
amount (see fig. 2). Nevertheless, the
presented algorithm is also able to find distinct
color areas (Note: 1: = (1,1, 17):

1. Smooth the input RGB image A with a
small square mask (7x7 pixels)

2. Calculate the standard deviation image
D of the result with same mask size

3. Store for each pixel in D the maximum
value of all channels in D’

4. A pixel in D' is considered as
homogenous if its value is below the
sample mean of D’

5. A pixel in D’ is considered as a field
pixel if it is homogenous, within the
field area and has an appropriate hue
(for both see section 3)

All field pixels form region F

7. Use the relative histogram of V(F) and
select its biggest function values until
their sum exceeds a predefined level

(e.g. 98%) and merge the found entries

into intervals, stored in interval set I
8. Calculate p, the vector of the sample

mean for the color vectors of A in F

and p, the sample mean of the values

of V in F; then the line shift is

T=p—pyl
9. Get the sample variance matrix X in F

of the vectors within the three channel

o



difference image (A — ) —
(V —uy)1 = A —V1 — 1. The outer
diagonal elements are negligible and
set to 0
10. Iterate through A:
a. Store the color components of
the current pixel in a vector ¢

b. A.(c) = §(1Tc -177)

Get y = argmin |x — A,.(c)|
xeUlI
d. The shortest Euclidean distance
issd=c—1—-y1
e. Weighted: d' = vdTZ~1d
f. Threshold depending on d’
As depicted earlier, the basic idea is to work
on a single shifted intensity line in the RGB
cube. That line is described as

Lx=1+11, 0<xq,x;,x3<1. (2)

Now for every color c, a shortest distance
from [ to ¢ (on a line orthogonal to [) can be
constructed. The intersection is calculated in
algorithm point 10b.

Interpreted geometrically the selected area in
the cube is equal to a set of extruded ellipsoids
(extruded polyhedrons in the discrete case).
The extrusion axis is the shifted intensity
domain [, the three ellipsoid half-axes are the
standard deviations of the difference image
(step 9). The number of connected components
is given by the number of intervals in L
Usually the differences between the original
and an one channel image with t-shift are,
within field points, below the threshold of
perception. This, of cause, leads to small color
regions in the cube. An example for the region
selection is shown in figure 2.

Fig. 2. The blue diagonal line is T shifted and marked as
a green line within the RGB cube. Afterwards the
interval areas are inflated according the measured

deviation values.
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The threshold value in step 10f depends on the
normalized Euclidean distance and is therefore
weighted with the variances calculated in step
9. Hence, the limits can be expressed in terms
of the standard deviation. An example for a
mask created with the presented algorithm is
shown in fig. 3.

Fig. 3. The result of a binary field color calculation,
non-field points are magenta shown at the left side
(Source: ProSiebenSat.1 Media AG)

Refinement to continuous codomain

The approach discussed in the previous section
allows to find the field colors and calculate
binary masks. While this might be a sufficient
result for a variety of scenarios, it leads to hard
edges around inhomogeneous regions within
the field (see fig. 4). This can be managed by
relaxing the output to a mask with a
continuous codomain.

Fig. 4. The grass mask (magenta) once created using a
binary threshold (left), once refined to continuous
domain (right).

The algorithm from section four changes only
in step 10e where the error function

2 (%
erf(x) = ﬁf e dt
0

is implemented in a shifted form as

€)

erfs, , (x) =
1 1 Vr(a+b-2x)
272 rf( ab ) (4)
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Using 0 < a < b as thresholds and thus as
multiples of an “averaged standard deviation”,
we are able to obtain masks with continuous
codomain from erfs, ,(d") like in fig. 4.: The
first value, a, is the certainty value where
every variance below will be accepted while
the second, b, is the opposite, every color with
higher distances will be declined (with a slight
error). A distance between a and b is weighted
with a swing. This results in better edge
accuracy at inhomogeneous field regions than
a linear function could offer.

Results and Evaluation

The proposed algorithms have been tested
intensively on five different soccer games
from diverse leagues and competitions and
from various sources (different broadcasters,
different resolutions). We created a ground
truth database containing 54 images with
annotated field and grass regions to evaluate
the algorithms.

Table. Results for field and binary color
detection (using a threshold of 6)

(Pixel wise error) Precision Recall
Field hull 99.31% 99,53%
Color area 99,11% 97,30%

We are also able to detect non field view
images if a hull cannot be constructed or if the
difference between hull and grass mask is too
big. Both algorithms chained work in real time
on a today’s standard PC.

Conclusion and Outlook

We present a novel approach for soccer field
analysis. The field points and the hull can be
estimated robustly with remarkable precision
and recall rates in real time. In our current
work, we combine both with a new line and
person detection system to segment the image
in its beneficial parts. Figure 5 and 6 show two
examples. Future work will make use of this
abilities, e.g. within a shot detection system
with automatic field view identification for
soccer games.

Fig. 5. The image from fig. 1 evaluated with the
presented algorithms and an adapted line detector
enables field position determination.
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Fig. 6. Human and field color detection
combined.(Source: ProSiebenSat.1 Media AG)

References

1. W-L. Lu, J.-A. Ting, J. J. Little, K. P. Murphy.
Learning to Track and Identify Players from
Broadcast Sports Videos / IEEE Transactions on
Pattern Analysis and Machine Intelligence — 2013 —
Vol. 35, No. 7—-P. 1704-1716

2. X.-F. Tong, H.-Q. Lu, Q,-S. Liu. An Effective and
Fast Soccer Ball Detection and Tracking Method //
Proceedings of the 17th International Conference on
Pattern Recognition, 2004 — Vol. 4 — P. 795-798

3. O. Utsumi, K. Miura, I. Ide, S. Sakai, H. Tanaka. An
object detection method for describing soccer games
from video // IEEE International Conference on
Multimedia and Expo, 2002 — Vol. 1. — P. 45-48

4. S. Choi, Y. Seo, H. Kim, K.-S. Hong. Where are the
ball and players? Soccer Game Analysis with Color-
based Tracking and Image Mosaick // International
Conference on Image Analysis and Processing —
1997 — P.196-203

5. A. Ekin, A. M. Tekalp, R. Mehrotra. Automatic
Soccer Video Analysis and Summarization // IEEE
Transactions on Image Processing — 2003 — Vol. 12,
Issue 7 — P.796-807

6. X. Yu, Q. Tian, K. W. Wan. A novel ball detection
framework for real soccer video // International
Conference on Multimedia and Expo, 2003 — Vol. 2
—P.I1265-268

7. S. Gedikli. Continual and Robust Estimation of
Camera Parameters in Broadcasted Sports Games //
TUM Dissertation - 2009 - P.86-91 -
http://mediatum?2.ub.tum.de/doc/649729/document.p
df



