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Abstract—This paper addresses the problem of finding body
parts in images, which can be an essential first step for body pose
estimation. The core component of the presented method is the
pixel-based classification of body parts using Random Forests.
This technique is applied to find the body part positions of
soccer players in broadcast images. As this approach is usually
used with depth data, we analyze how this method can be
adapted to work with monocular images. In this context we
identify the image representations with the best classification
results. Although monocular images leave some ambiguities, our
approach to body part classification achieves satisfying results:
90.32% of the pixels in the test set are correctly classified.

I. INTRODUCTION

The aim of articulated pose estimation is to determine the
position of body parts and/or joints of a model of the human
body in 2D or even 3D space. Hence, finding the position of
body parts in an image, which is in the focus of this paper,
can be seen as an essential part of a pose estimation algorithm.
Combined with a skeleton fitting method it can be used to
estimate 2D or 3D poses (e.g. by applying an inverse kinematic
technique similar to Wei et al. [1]). In this paper we examine
the particular application of detecting the body parts of soccer
players in monocular images of soccer matches. As we work
with cropped images of players from distance shots, we require
a solution that can handle low resolution images.

Despite its use as part of a pose estimation system, the
pixel-based classification yields precious information on its
own. During the analysis of a soccer video sequence, for
instance, it might help to indicate whether the ball was hit by
the player’s foot, head, or hand. But the presented method can
also be applied in other areas, given a monocular image and a
person’s silhouette. Some of the many areas of application
are autonomous cars, human-robot interaction, surveillance,
video indexing, and sports. Especially, when already employed
cameras should be used or already recorded material should
be analyzed, a solution that works with monocular images is
required.

In summary, given the surrounding bounding box of a
player in an image, our method performs two successive steps:
In the first step we estimate the body orientation of the player.
The result serves as input for the second step: For each pixel
within the bounding box we determine the body part of the
player to which the pixel most probably belongs.

Our proposed approach builds upon the work of Shotton et
al. [2] who developed the pose estimation system for the

Kinect gaming platform [3]. Similar to their approach, a
Random Forest is used to classify each pixel of an image
based on the state of the pixels in the neighborhood. The aim
is to assign a body part or background class to every pixel
in the image, as depicted in Fig. 1. This paper focuses on
finding alternative image features to replace the missing depth
information that was originally provided by the Kinect sensor.
Therefore, several preprocessing steps are examined.

In addition, the body part classification of soccer players is
more challenging than the classification of Kinect players since
there is a greater variation in viewpoints. Therefore, an idea
of Andriluka et al. [4] is followed who suggest to estimate
the viewpoint beforehand. For this task, the orientation of a
player is categorized into eight classes. A Random Forest is
trained to estimate the orientation class of a player using the
same techniques as for body part classification.

The main contribution of this paper is the adaption of
the algorithm by Shotton et al. [2] to work with monocular
images and the comparison of image features for this task.
Furthermore, the problem of finding the orientation of a player
is examined and corresponding results are presented.
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Fig. 1: Body part classification: (a) original player image, (b)
silhouette retrieved using [5], (c) estimated body parts, (d)
ground truth annotations

A. Related Work

The problem of finding the pose of a person from sensor
data has been investigated by many researchers before. For
surveys on this topic see the work of Moeslund et al. [6]
or Poppe [7]. With the upcoming of the Kinect gaming
platform [3], developed by Microsoft, an accurate and fast
pose estimation algorithm was presented [2] that is working
on depth information. The main advantage of their algorithm



is a fast classification using a Random Forest with the idea of
classifying every pixel separately. This allows for paralleliza-
tion and implementation on GPUs, as shown by Sharp [8].
The presented approach differs from Shotton et al. [2] as it
does not rely on depth information but works with monocular
images.

Nevertheless, there are also several solutions for monocular
images presented in literature. Many of these rely on the
pictorial structures model, originally introduced by Fischler
and Elschlager [9] and later applied to human pose estimation
by Felzenszwalb and Huttenlocher [10]. The final results of a
system using their techniques, for instance that of Andriluka et
al. [11] who even estimate a 3D pose, are quite impressive.
The complex series of actions that is required, however, also
comes with a computational burden. For instance, Andriluka et
al. [11] report an overall runtime of about 50 seconds for
a 167 × 251 pixel image. In comparison, the method by
Shotton et al. [2] can perform in real-time. Wei et al. [1]
extended their approach and estimated a pose using the pixel-
based classification, still keeping real-time performance. The
presented approach clearly differs from classical pose estima-
tion algorithms for monocular images due to the pixel-based
classification concept and, thus, has computational advantages.

II. BODY PART CLASSIFICATION

As mentioned above, the classification of body parts is a
core component of our method. Since images from broadcast
videos might have a very low resolution, a rather coarse
division into parts is necessary. Furthermore, the body model
should be divided into more or less rigid parts to minimize
the variation in appearance of each part. We use the fol-
lowing 14 classes: head, torso, left/right lower/upper arm,
left/right lower/upper leg, hands, and feet (similar to [12]).
The presented method largely follows the idea of Shotton et
al. [2]. A Random Forest is used to classify every pixel of
an image. Shotton et al. compare depth values of pixels in
the neighborhood to decide about the class of a pixel. As
such depth information is not available in monocular scenarios
the following alternatives are examined: silhouette information,
skin, color, gradient images, Haar-like features on gradients,
HOG descriptors, pixel positions, and estimated player orien-
tations. Since some of these features might give partial in-
formation about certain body parts only, feature combinations
are examined as well. The silhouettes are retrieved using the
method of Hoernig et al. [5] which is especially applicable in
soccer and similar field sports. Silhouettes are very expressive
but naturally leave some details unrecognized. Skin features
are extracted from the image using the method described by
Gomez and Morales [13] and are intended to complement
the silhouette information. Additionally, raw color values are
examined as well to see if the applied Random Forest is
powerful enough to extract the most useful information by
itself. Another way of finding hidden details inside silhouettes
are gradients and their magnitudes. However, the most useful,
strong gradients usually exist at thin edges and are therefore
hard to utilize by the presented approach. The idea of summing
up the gradients within an image area is implemented using
Haar-like features (similar to [14] ). Finally, Histograms of
Oriented Gradients (HOG) [15] are examined, as they have
shown good results in human detection.

Fig. 2: Illustration of the classification method for silhouettes:
the blue cross marks the pixel that has to be classified, the
yellow circles mark positions in the neighborhood at which
foreground probabilities are compared to a threshold

We trained Random Forests using these features and feature
combinations to estimate the orientation of a player. Each
node in the forest examines a feature value at a certain
position in the image and compares it to a threshold. The most
expressive position that contains the most distinctive feature
values and the threshold were chosen during the training phase.
The estimated orientation can be important for further pose
recovery tasks, but it also gives hints about body part classes.
Therefore, the result of the orientation classification serves as
a feature for the pixel-based body part classification.

While orientation classification is concerned with the orien-
tation of a whole player image, body part classification tries to
find a class for a single pixel. Hence, an additional information
that is available is the pixel position relative to the player’s
bounding box. Therefore, it is considered as a feature for the
body part classification as well.

For all features, a simple axis-aligned weak learner is
used. This means that a simple comparison between a feature
attribute value and a threshold is performed in each node of
a Random Tree. In the training phase an expressive feature
attribute has to be chosen and an appropriate threshold has to
be found. For a detailed description of Random Forests see,
for example, the extensive work by Criminisi et al. [16].

We trained different Random Forests on features and
combinations of these and performed an evaluation using a
challenging data set containing 70 images of players in various
poses, resulting in millions of test pixels. Surprisingly, a
rather simple combination of features showed to perform best:
silhouette, color, orientation, and pixel position. Therefore,
these four features are described in detail.

A. Silhouette

The silhouette information retrieved using [5] is not bi-
nary but provides foreground probabilities for every pixel.
The applied weak learner of the Random Forest compares
foreground probabilities in the neighborhood of a target pixel
to a threshold. Which pixel in the neighborhood should be
examined is specified by an offset that has to be found in the
training phase. This is illustrated in Fig. 2.

B. Color

Color contains full information, hence, it is more challeng-
ing to extract the most relevant information. Similar to the idea
of Shotton et al. [2] two different strategies are encoded in



TABLE I: Orientation classification accuracy

Features Accuracy
Silhouette 51.4%
Silhouette + Skin 49.3%
Silhouette + HOG 40.7%
Silhouette + Gradients 38.5%
Silhouette + Color 35.0%
Color 29.3%
Silhouette + Haar-like 28.6%

TABLE II: Body part classification accuracy

Features Accuracy
Sil. + Orientation + Position + Color 90.32%
Sil. + Orientation + Position + Gradients 89.54%
Sil. + Orientation + Position + Skin 89.46%
Sil. + Orientation + Position + HOG 89.43%
Sil. + Orientation + Position + Haar-like 89.37%
Sil. + Orientation + Position 89.34%
Silhouette 87.13%
Silhouette + Orientation 87.03%
Color 85.23%

the applied weak learner of the Random Forests. One option
is to compare the value of a color channel to a threshold. The
other option is to compare the value difference between two
pixels regarding one color channel to a threshold. This feature
involves choosing one of these options and finding one or two
offsets, a color channel, and a threshold during the training.

C. Pixel Position

This paper is only concerned with finding the body parts
of players, thus, it is assumed that players are already detected
and that their bounding boxes are known. A further improve-
ment of the classification accuracy can be achieved by adding
the position of a pixel relative to a players bounding box as
a feature (see Table II). To optimally utilize the position data,
the Random Forest is provided with redundant information. In
particular, a pixel’s distance to the top, left, right, and bottom
of the bounding box are provided, as well as the coordinates
relative to the center. The applied weak learner selects one of
these measurements and compares it to a threshold.

D. Player Orientation

As mentioned above, the orientation of a person is esti-
mated as well. The Random Forest for body part classification
contains a weak learner that compares the estimated probability
of one of the eight orientation classes to a threshold.

III. EXPERIMENTS

To evaluate the performance of the proposed system and to
find the best feature or feature combination an extensive evalu-
ation was performed. Concentrating on the special application
of broadcast videos of soccer matches a corresponding data set
was created that contains 200 images of soccer players from
various viewpoints, in various qualities and containing motion
blur and similar challenges. The average size of these images
is about 78×120 pixels, but every image was scaled to a height
of 200 pixels (with fixed aspect ratio) to cope with different
image sizes to some extend. The data set was split into 130
training and 70 test images. To enhance the data set a flipped
version of every image was added, while assuring that players

from test and training set are not mixed up. In all images of
the data set body parts were manually annotated on pixel-level.

Concerning the classification of a player’s orientation, a
Random Forest that uses the silhouette only, achieves the
best results for the soccer data set (see Table I). Classifying
the orientation is a difficult task, only 51.4% of the player
images are classified correctly, however, it is sufficient to
support body part classification. Furthermore, it is a useful
information for upcoming pose estimation tasks. It is likely that
performance could be improved by increasing the number of
training samples. This might also help to utilize more complex
features better. Although, 130 images yield millions of training
pixels for the body part classification, they only yield 130
samples to train the orientation classifier.

As already mentioned above, our most accurate feature
combination for body part classification is silhouette, color,
position, and orientation. An example result is visualized in
Fig. 1. Using this feature combination 90.32% of the pixels in
the test set are correctly classified. Here, a pixel is considered
correctly classified if the class with the highest probability
equals the ground truth class. As can be seen from Table II,
the results for other combinations are only slightly worse.
Note, however, that a significant part of the pixels of a player
image are background and are already indicated as such by
the silhouette. In fact, if a simple threshold is applied to the
silhouette probabilities and the resulting foreground pixels are
classified as torso (the most frequent class), already 79.95%
of the pixels in the test set are correctly classified. Thus, a
good classifier is expected to improve significantly over this
baseline.

The best performing Random Forest within our test set
contained 20 trees, which are trained to a depth of 20 but
are also limited by a minimal amount of samples per leaf of
92. Every tree is trained on a random subset of the training
data. During training only a random subset of the theoretically
possible splits is examined as it is common practice for
Random Forests. The neighborhood of a pixel that is examined
is limited to a 50 × 50 pixels patch for images of height
200 pixels. An examination of this Random Forest shows
that most information is retrieved from the silhouette, while
the orientation, the color and the pixel position only improve
results slightly.

The classification of orientation and body parts can be
performed in less than a second on a recent CPU. As already
mentioned, Random Forests can be implemented on GPUs
which promises a significant performance improvement.

IV. CONCLUSION

The performed experiments have shown that it is indeed
possible to use pixel-based classification on image data from
monocular cameras to estimate the position of body parts with
high accuracy, even for low resolution and low quality images.
Furthermore, it has been shown that simple features are usually
sufficient to receive good results. However, some challenges
remain such as distinguishing the left and right body parts,
and scoping with erroneous silhouettes, which contain field
lines, advertisement banners, or similar background objects.
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