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Abstract. We present a novel object tracking scheme that can track
rigid objects in real time. The approach uses subpixel-precise image edges
to track objects with high accuracy. It can determine the object position,
scale, and rotation with subpixel-precision at around 80fps. The tracker
returns a reliable score for each frame and is capable of self diagnosing a
tracking failure. Furthermore, the choice of the similarity measure makes
the approach inherently robust against occlusion, clutter, and nonlinear
illumination changes. We evaluate the method on sequences from rigid
objects from the OTB-2015 and VOT2016 dataset and discuss its per-
formance. The evaluation shows that the tracker is more accurate than
state-of-the-art real-time trackers while being equally robust.
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1 Introduction

Visual object tracking is a fundamental problem in computer vision that is con-
cerned with estimating the 2D pose of an object in a video sequence. It has a
wide range of applications, such as robotics, human-computer interaction, and
visual surveillance [3,6,9].

To cover the large amount of applications, the performance of trackers is usu-
ally evaluated on very diverse, publicly available, benchmarks, such as VOT2016
[7], OTB-2015 [17], or MOT16 [10]. Although the videos in the benchmarks are
very diverse, they do not necessarily cover specific applications, but rather try to
be as general as possible. This leads to the fact that, in general, trackers are op-
timized towards their generalization capabilities and not to a specific application
[3,4,11]. Furthermore, the objects in these datasets are manually labeled with
either axis aligned or oriented bounding boxes and the accuracy of a tracker is
measured by its bounding box overlap [8]. Hence, trackers with subpixel precise
localization or ones not restricted to oriented or axis-aligned rectangles do not
necessarily have higher overlap scores in the benchmarks. Nevertheless, many
industrial applications such as autonomous driving or the visual monitoring of
industrial production processes require a good localization accuracy in real-time.
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For example, when picking an object from a conveyor belt with a robot, the
bounding box of the object is not sufficient.

We present a real-time capable tracker that is able to determine the similarity
transformation of a rigid object between frames. We leverage the fact that image
edges can be determined with subpixel-precision to obtain a subpixel-precise
object localization and do not restrict the object to a bounding box. The tracker
returns a reliable score for each frame and is capable of self diagnosing a tracking
failure. The two examples sequences in Fig. 1. show the localization quality of
our approach and the fact that it is virtually drift-free for a rigid object in a
sequence over 3000 frames. In the experiments section, we evaluate the method
on further sequences from the OTB-2015 and VOT2016 dataset and comment
on the performance characteristics of the presented approach.

Correlation-based tracker [2] STAPLE [1] Our approach

Fig. 1. Vase and Car24 from the OTB-2015 [17] benchmark. We compare our approach
to two equally fast, state-of-the-art trackers: STAPLE [1] and a scale adaptive correla-
tion tracker [2]. Our approach is able to accurately determine the position, scale, and
rotation of the objects, as opposed to just the axis aligned bounding box. The tracker
is virtually drift-free in the second sequence (which has over 3000 frames). All three
trackers run in real-time at 100 fps on both sequences.

2 Related Work

Within visual object tracking, immense progress has been made in recent years.
For example, the best performing tracker in the VOT-2014 challenge was only
ranked 35th in the 2016 challenge, with around half of the expected average
overlap (AEO) of the VOT2016 winner [7]. The great gain in performance is
mostly due to the widespread adoption of discriminative learning methods such
as discriminative correlation filters with complex features [3,5,6,18] and deep
convolutional neural networks (CNNs) for tracking [4,11,16] (2015 VOT win-
ner and the 2016 baseline for runner up). Although CNN-based trackers show
impressive generalization properties and can cope with diverse sequences, most
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approaches are restricted to axis-aligned bounding boxes [16] and their accu-
racy is not on par with their robustness [7]. Furthermore, the computational
complexity of many approaches is infeasible and only few approaches are real-
time capable with a high performance GPU [4], which is not an option in many
industrial applications.

In terms of speed, very robust trackers have emerged in the last few years
which are real-time capable. Most of them build on discriminative correlation
filters and extensions thereof [1,3,5,6,18]. For example, the STAPLE tracker [1]
combines a HOG-based correlation filter with a model based on color statistics
and achieved the best real-time performance at the VOT-2016 challenge [7].
Danelljan et al. [3] go beyond the ordinary discriminative correlation framework
and train continuous convolution filters. Their approach performs on par with
trackers based on CNNs and can be extended to subpixel-precise feature point
tracking. Unfortunately, all of the mentioned approaches are restricted to axis
aligned bounding boxes.

Similar to our approach, Lepetit and Fua [9] present a tracker that estimates
the pose of rigid objects. Their keypoint-based recognition system is robust to
occlusion and clutter, but requires an extensive offline training phase to generate
the tracking model. In contrast to our approach, their tracking is restricted to
textured objects that exhibit sufficient keypoints for reliable tracking.

As opposed to the above mentioned approaches, our approach is capable of
estimating the position, scale, and rotation of an arbitrarily shaped object in
real-time and does not require an extensive offline training nor is it restricted to
textured objects.

3 Shape-Based Tracking

Our tracking approach builds on the efficient shape-based object recognition
technique of Steger [13]. In the first frame, a shape-based model is generated
from the arbitrarily shaped ROI of the detected or marked object. The model is
used to determine the optimum object pose in the subsequent frames. After each
successful tracking step, the model is updated and unstable points are filtered
out and new points are added. The three steps (1) model generation, (2) model
localization and, (3) model update are explained in more detail in the following
section. Furthermore, we describe how the approach is made efficient and able
to track most objects in the VOT2016 [7] and OTB-2015 [17] datasets at around
80fps without using the GPU on an IntelCore i7-4810 CPU @2.8GHz with 16GB
of RAM with Windows 7 (x64).

3.1 Model Generation

In the first frame, the tracking model M is constructed from the ROI of the
automatically detected or manually marked object. The model consists of a set
of n points pi = (xi, yi)

T and their corresponding direction vectors di = (ti, ui)
T :

M = {(pi, di) ∈ R2 × R2, for i = 1, . . . , n}. (1)
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In a first step, point candidates are extracted by applying a threshold on the
Sobel filter edge amplitude of the input ROI. To thin out the number of points,
non-maximum suppression is applied with automatically estimated thresholds,
see the patent [14] for details. The remaining points can then be refined to
subpixel-precision which is described in more detail in Chapter 3.3 of [12]. The
coordinates of the model points are all expressed relative to an arbitrary reference
point. We use the center of the bounding box for simplicity. An exemplary model
is displayed in Fig. 2.

Please note, that we do not have a training phase of our model. The model
consists of a single set of points and their directions. The model transformation
to different poses is done on the fly in the localization step.

(a) Example Image from the
OTB-2015 benchmark [17]
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(b) Model Points pi and their
direction vectors

Fig. 2. The model in (b) is generated from the ROI in the first input frame displayed in
(a). The model point are generated from non-maximum suppressed edges with a high
enough edge amplitude (see [14]). The model in (b) is simplified for better visualization.
The real model has over 400 points.

3.2 Model Localization

The model localization essentially amounts to finding the best matching can-
didate within the target image in a template matching framework. Hence, we
compare a transformed model to the target image at a particular location by
a similarity measure. By setting a minimal required similarity, we are able to
avoid a very large number of computations.

In a first step, we calculate a direction vector for each pixel within the cur-
rent frame and identify them as ex,y = (vx,y, wx,y). We can then evaluate the
similarity of the tracking model M to the current frame at various image loca-
tions and for different transformations of the tracking model. The location and
transformation parameters with the highest similarities are the most probable
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object locations. The similarity transformation of a model point is given by:

p′i =

(
σ cos θ −σ sin θ
σ sin θ σ cos θ

)
︸ ︷︷ ︸

Tθ,σ

pi +

(
xt
yt

)
, (2)

where θ and σ are the rotation and scale parameters, respectively. Similarly, the
transformed direction vectors are obtained by

d′i = (T−1θ,σ)T di. (3)

As similarity measure we use the normalized sum of dot products of the
normalized direction vectors of the transformed model and the target image:

s(xt, yt, θ, σ)M =
1

n

∣∣∣∣∣
n∑
i=1

〈
d′i, ep′i

〉
‖d′i‖ · ‖ep′i‖

∣∣∣∣∣ , (4)

with s : R4 → [0, 1]. The similarity measure is robust to occlusion, clutter,
non-linear illumination changes, and a moderate amount of defocusing [13]. The
robustness to non-linear illumination change comes from the fact that all direc-
tion vectors are scaled to unit-length. The robustness to occlusion comes from
the fact that missing points in the target image will, on average, contribute
nothing to the sum of (4). Similarly, clutter lines or points in the target image
do not only need to coincide with the sparse set of model points, but also need
to have a similar direction vectors to contribute to the similarity.

Target image Score(x,y)(θ,s)

The similarity of the model M is
calculated for the position (xt, yt),
scale σ, and rotation parameter θ

Gradient amplitude and direction

Fig. 3. In a first step, the gradient amplitudes and direction of the target image are
calculated. The amplitudes are required for the subpixel-precise refinement of the object
position. The maximum similarity of the model M from Fig. 2. is calculated for the
position, scale and angle within the discretized 4d search space.
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The localization process is visualized in the flowchart of Fig. 3. At this point
the optimal position, angle, and scale are determined with pixel accuracy. In
the following subsection, we display how the 4d optima (x̃t, ỹt, θ̃, σ̃) is refined to
subpixel accuracy.

3.3 Subpixel-precise Refinement

The accuracy of the localization step depends on the chosen discretization of σ
and θ as well as the pixel resolution. To refine the match, we apply the concept
of the 4d facet model. We approximate the 4d parameter space by calculating
a second order Taylor polynomial around the 3 × 3 × 3 × 3 best match and
extracting the maximum of this polynomial [13].

To further improve the localization accuracy and the robustness of the track-
ing to small model deformations and transformations that cannot be captured
by a similarity transformation, we use a modified version of the least squares
refinement described in [15]. The least-squares refinement assumes a good initial
approximation of the current transformation and improves the global similarity
transformation for all points. For each model point pi, the best point match in
the direction of ±d′i is determined. The concept is displayed in Fig. 4 and ex-
plained in more detail in [15]. In contrast to [15], we do not restrict the length
of the search line to 1, but rather allow an arbitrarily long search line. We found
that a single least squares iteration was sufficient for most tracking sequences.

p1

p2

p3

p4

p5

p6

p̃4

Fig. 4. The model is adapted to transformations that cannot be captured by a simi-
larity transformation of the complete model. After the optimal model position, scale,
and rotation have been determined, each point searches for its best match along a 1d
search line perpendicular to its image tangent. The length of the search line is variable,
but has a significant impact on the runtime.
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3.4 Model Update

After we have successfully refined the object pose to subpixel-precision, we con-
duct one final search for the best corresponding target image point for each
model point in the direction of ±d′i. This time we do not update the global sim-
ilarity transformation of the model, but rather update the relative positions of
the points themselves. This improves how well the model will fit to the target
image at future timesteps.

In the example shown in Fig. 4, we shift p4 towards the best match p̃4 that
is found along the yellow line. We regularize the model update with a parameter
λ to be more robust to noisy object deformations. At frame t we update each
point pti with its best match p̃ti such that:

pt+1
4 = pt4 + λp̃t4. (5)

The update step does not only allow our approach to capture small model de-
formations, but also weakens the restriction of our approach to similarity trans-
formations of the model, consequently projective transformations that increment
over time may be captured by locally deforming the model points.

Please note that in tracking settings the model update step always needs to
find the balance between keeping the localization accuracy high and generalizing
well to new representations of the model. In our approach, too large parameter
values of λ may add drift and can lead to a degeneration of the tracking model
if no extra care is taken. Nevertheless, since the model transformation is deter-
mined with subpixel-precision, even long sequences with over 3000 frames, like
the one in the example displayed in Fig. 1., do not drift significantly.

During the tracking process, we further monitor how often every model point
is found. This step enables us to identify points that are not significantly con-
tributing to the model localization and to remove them. These points may have
either emerged from poorly initialized points in the first frame or by parts of the
object becoming occluded or changing in later frames. To prevent us from delet-
ing all points and degenerating the model, we sample new points in sparse areas
of the model after a successful tracking step. This allows us to capture newly
emerging object edges. The example in Fig. 5. shows how the model update helps
to capture deformations of the object.

3.5 Implementation Details

In tracking we do not need to search for the model in the target image exhaus-
tively in each frame. To reduce the workload, we restrict the possible parameter
values of (θ, σ) ∈ [θc−0.1, θc+ 0.1]× [σc−0.2, σc+ 0.2], where θc and σc refer to
the current object rotation and scale. Furthermore, for the translation, we define
a circular search region with a radius of 1/2 of the object diagonal. Although
the search space was adequate for all of the test sequences, the size of the search
region may be increased for fast moving objects.

If no parameter set of (xt, yt, θ, σ) that has a score > smin is found in a
frame, we increase the search region and the parameter ranges of (θ, σ) for the
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λ = 0.0 λ = 0.7

Fig. 5. Sequence Coupon from OTB-2015. If no model update is performed (λ = 0.0)
the tracker jumps to the wrong dollar note when the folded top note is moved. If the
model update parameter λ is set high enough, the model is updated when the note is
folded and the tracker succeeds.

next frames successively. As soon as we find the object again, we reset the search
parameters to their initial value. To prevent the workload from becoming too
large, we decrease the discretization of the search space when it becomes bigger.
Although this decreases the accuracy, it gives us the chance to re-detect lost
objects and improve the accuracy in the subsequent frames.

To achieve further speed-ups, we stop calculating a score for a model trans-
formation as soon as it cannot reach a predefined minimal score smin anymore.
To obtain an even larger speed-up it is possible to be even stricter, please refer
to [15] for further details.

smin = 0.4 smin = 0.6 smin = 0.8

Fig. 6. The results for 3 different parameters of smin are displayed for the FaceOcc1

sequence from OTB-2015. The value of smin is an indicator of how much the object
is allowed to be occluded. Lower values improve the robustness to occlusion but also
require more time, since more score values need to be computed. For smin = 0.8, the
object is not detected for the third to fifth image, while for smin = 0.6 it is lost for the
fourth and fifth image. However, all approaches recover when the occlusion ends.

The parameter smin gives a good estimation of the allowed object occlusion.
If half of the model points are occluded in the target image, the maximum
score that can be obtained is 0.5. This is displayed in Fig. 6., where the face
is essentially occluded by over 50% and hence, only values of smin < 0.5 are
able to track the object through all frames. Please note that a low value of smin

increases the number of points for which the score needs to be calculated and
hence has a negative impact on the runtime.

Further speed-ups can be obtained by only using a fixed number of points
for tracking the object. Before each localization step, a random subset of points
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is selected from the model M and used for tracking. Although some accuracy
may be lost, the execution time can be reduced.

4 Experiments

The restriction to rigid objects and subpixel-precise localization makes it difficult
to compare the approach to the vast majority of existing schemes in general. First
of all, the data of existing benchmarks, such as VOT2016 [7] and OTB-2015 [17],
are not annotated with sufficient accuracy and focus on robust, generalizable
tracking. Hence, we focus our evaluation on selected sequences of rigid objects
from both datasets and point out the strengths and weaknesses of the proposed
approach.

To get a fair comparison, we compare our method to the state of the art
STAPLE tracker [1], which was the best real-time tracker at the VOT-2016
challenge [7], and a very fast correlation filter tracker with scale adaption, based
on [2]. We evaluate the average bounding box overlap [17] on a selection of rigid
objects from both the OTB-2015 and VOT-2016 datasets in Fig. 7. Please note
that the ground truth data is mostly only labeled as axis aligned bounding boxes
which puts a heavy bias on the obtained overlaps. For example, for the sequence
Vase we visually clearly outperform both approaches, as is seen nicely in Fig. 1.
Nevertheless, the bounding box abstraction lets the overlap drop very low.

To measure the robustness, we do not use the VOT-2016 measures, but rather
evaluate if the tracker is successfully tracking the target in the last few frames
(bounding box overlap > 50%). Here STAPLE (22/26) and our approach (21/26)
perform equally well, while the correlation based approach drops off (13/26). In
the following we will discuss individual sequences in more detail.
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Correlation-based tracker[2] STAPLE [1] Our approach

Fig. 7. The average bounding box overlap for rigid sequences within the VOT2016
and OTB-2015 datasets. We compare our overlap scores to STAPLE [1] and a scale
adaptive correlation tracker based on [2].

The choice of the similarity measure in (4) makes the tracker inherently
robust to nonlinear illumination changes. This is visualized for two sequences in
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Correlation-based tracker[2] STAPLE[1] Our approach

Fig. 8. Our tracking scheme is inherently robust to illumination changes because of the
similarity measure we use in the localization step (4). The method performs comparable
to STAPLE and outperforms the scale adaptive correlation tracker, which fails in the
first sequence, in terms of accuracy.

Fig. 8.. The tracker localization quality is unaffected by the car driving under
the bridge or the light being turned on and off in the second sequence. However,
very strong changes of the illumination can make it difficult to segment the edge
orientation of the target image robustly and lead to tracking failure, which is
what happens in the sequence Fish.

The fact that our approach is essentially a local object detector with a mean-
ingful score allows our framework to detect tracking failure reliably and recover
from complete object occlusion. In Fig. 9, the object is completely occluded in
the middle of the sequence and hence the STAPLE and correlation-based tracker
start adapting their filters to the foreground. Neither of the approaches is able to
recover from the complete occlusion. Our approach, on the other hand, detects
the tracking failure and is able to re-detect the object when it reemerges.

The fact that our approach searches for the best similarity transformation
between the frames leads to the fact that our approach is weak in sequences
where the object has strong local deformations. Furthermore, strong camera
motion and image blur can make it fail. In the sequence in Fig. 10, the object is

Correlation-based tracker[2] STAPLE[1] Our approach

Fig. 9. A further advantage of our approach is the possibility of self-diagnosing when
the object is lost. The score is a reliable indicator of how much of the model is visible.
In the sequence Box from OTB-2015, all three trackers fail when the object is strongly
occluded. Nevertheless, our approach recovers when the occluded object reappears.
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lost whenever the camera motion is too strong. Fortunately, the object is always
re-detected when the camera motion stops and the edges become clear enough.
In the respective frame, the STAPLE tracker fails near the end when the camera
motion is extremely high.
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Correlation-based tracker[2] STAPLE[1] Our approach

Fig. 10. Edge-based tracking has difficulties when the image blur becomes too large.
Neighboring edges may merge into each other or disappear completely. This becomes
evident in the sequences BlurCar1 sequence from OTB-2015 [17]. Our tracker loses the
object when the camera motion is too large. Nevertheless, in both sequences the tracker
is always able to recover and finishes the sequence with a very good localization. The
STAPLE tracker loses the track at frame 543 and does not recover.

5 Conclusion

In this paper, we have proposed an efficient object tracker that is able to de-
termine the position, scale and rotation of a rigid objects in various different
sequences with high accuracy. We validated our framework on a rigid subset of
the VOT-2016 [7] and OTB-2015 [17] datasets and were able to perform on par
with real-time state-of-the art approaches in terms of robustness. As opposed to
the existing schemes, our approach is more accurate in terms of localization. On
the one hand this is due to the subpixel-precise refinement of the object pose
and, on the other hand, due to estimating the object rotation.

Unfortunately, the label data of the existing benchmarks is restricted to axis-
aligned and oriented bounding boxes, which makes it difficult to quantize the
localization gains in the established performance measures. A subpixel-precise
tracking dataset and evaluation framework that is not restricted to bounding
boxes would be very helpful for future evaluations.
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2. Martin Danelljan, Gustav Häger, Fahad Shahbaz Khan, and Michael Felsberg.
Accurate scale estimation for robust visual tracking. In BMVC, 2014. 2, 9, 10, 11

3. Martin Danelljan, Andreas Robinson, Fahad Shahbaz Khan, and Michael Felsberg.
Beyond correlation filters: Learning continuous convolution operators for visual
tracking. In ECCV, pages 472–488, 2016. 1, 2, 3

4. David Held, Sebastian Thrun, and Silvio Savarese. Learning to track at 100 FPS
with deep regression networks. In ECCV, pages 749–765, 2016. 1, 2, 3

5. João F. Henriques, Rui Caseiro, Pedro Martins, and Jorge Batista. Exploiting the
circulant structure of tracking-by-detection with kernels. In ECCV, pages 702–715,
2012. 2, 3

6. João F. Henriques, Rui Caseiro, Pedro Martins, and Jorge Batista. High-speed
tracking with kernelized correlation filters. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 37(3):583–596, 2015. 1, 2, 3

7. Matej Kristan, Ales Leonardis, Jiri Matas, Michael Felsberg, Roman P. Pflugfelder,
Luka Cehovin, Tomás Voj́ır, and Gustav Häger. The visual object tracking
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