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Abstract—In SCARA robots, which are often used in in-
dustrial applications, all joint axes are parallel, covering three
degrees of freedom in translation and one degree of freedom
in rotation. Therefore, conventional approaches for the hand-
eye calibration of articulated robots cannot be used for SCARA
robots. In this paper, we present a new linear method that
is based on dual quaternions and extends the work of [1]
for SCARA robots. To improve the accuracy, a subsequent
nonlinear optimization is proposed. We address several practical
implementation issues and show the effectiveness of the method
by evaluating it on synthetic and real data.

I. INTRODUCTION

SCARA (Selectively Compliant Arm for Robotic Assem-
bly) robots ( [2], [3]) are used in many industrial applications.
They differ from articulated (antropomorphic) robots in that
their movements are more restricted. The arm of an articulated
robot typically has 6 rotary joints that cover 6 degrees of
freedom (3 translations and 3 rotations). In contrast, SCARA
robots have at least 2 parallel rotary joints and 1 parallel pris-
matic joint that cover only 4 degrees of freedom (3 translations
and 1 rotation). Fig. 1 shows typical SCARA setups with 3
rotary joints: The camera can either be mounted on the robot’s
end effector (tool) and is moved to different positions by it
or it can be mounted stationary outside the robot. Compared
to other robot types, SCARA robots offer faster and more
precise performance. They are best suited for pick and place,
packaging, and assembly applications, and are often preferred
if only limited space is available.

We assume that the (moving or stationary) camera observes
the workspace of the robot. Objects are detected and localized
in the camera coordinate system. To be able to grasp the
object, the object pose must be transformed into the base
coordinate system of the robot. The process of determining
the required transformation between the camera and the robot
base coordinate systems for a stationary camera or between
the camera and the robot tool coordinate system for a moving
camera is called hand-eye calibration.

Fig. 1 shows the transformations that are involved in
the hand-eye calibration process for the case of a stationary
and a moving camera. c2Hc1 is a rigid 3D transformation,
represented by a 4×4 homogeneous transformation matrix, that
transforms 3D points from the coordinate system c1 into c2.
For stationary cameras, the fixed and unknown transformations
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are camHbase and toolHcal. Note that although the calibration
object is rigidly attached to the robot tool, in general the
exact relative pose of the calibration object with respect to the
robot tool cannot be gauged accurately by hand, and hence is
unknown. The remaining two transformations baseHtool and
camHcal of the closed chain of transformations depend on the
robot pose and are known from the robot kinematics and from
the algorithm that determines the pose of the calibration object
in the camera coordinate system based on a calibration image.
For moving cameras, the fixed and unknown transformations
are camHtool and baseHcal, while the known transformations
are the same as for stationary cameras.

In the following, we will concentrate on the case of a
stationary camera. The case of a moving camera can be treated
in an equivalent way. We assume that the robot is calibrated,
i.e., baseHtool is known accurately. Furthermore, we assume
a calibrated camera, i.e., the interior camera parameters are
known, and hence camHcal can be computed [4, chapter 3.9].
For simplicity reasons, we also assume w.l.o.g. that all joint
axes of the SCARA robot are parallel to the z axis of the robot
base and the tool coordinate systems.2 This is in accordance
with [3], where the z axis of base and tool coordinate system
are parallel to the robot joint axes. The input for the calibration
is obtained by moving the robot’s tool to n different poses and
for each pose acquiring an image of the calibration object that
is attached to the tool. Thus, the input consists of one pair of
calibration poses baseHtool and camHcal for each of the n
robot states.

It should be noted that the hand-eye calibration can also
be performed without a calibration object by using approaches
that are able to determine the 3D pose of arbitrary objects in
a monocular image, e.g., [6] or [7]. Furthermore, instead of a
camera, a 3D sensor can be used to observe the workspace of
the robot. In this case, camHcal can be obtained by approaches
that are able to determine the pose of objects in 3D sensor data,
like [8], [9], or [10].

A. Hand-Eye Calibration of Articulated Robots

The hand-eye calibration of articulated robots is well
understood. One of the most common problem formulations
is based on closing the chain of transformations [11]:

toolHcal = toolHbase
baseHcam

camHcal. (1)
2In [5], is it shown that if the joint axes are not aligned with the z axes,

the coordinate system can simply be rotated to achieve alignment. Aligning
the joint axes with the z axis has the advantage that the direction of the
indeterminate translation (see below) is well known.
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Fig. 1. Coordinate systems and transformations that are involved in the hand-eye calibration for the case of a stationary camera (left) and a moving camera
(right). The coordinate systems are: camera (cam), robot base (base), calibration object (cal), robot tool (tool). Unknown transformations that are determined
by the hand-eye calibration are visualized by dashed lines.

For each pair of calibration poses we set Ai = toolHbase

and Bi = camHcal, i = 1 . . . n. By setting the unknown
poses to X = baseHcam and Y = toolHcal, we obtain
Y = AiXBi. The pose Y can be eliminated by combining
two pairs of poses from two different states i and j, resulting
in AiXBi = AjXBj . Rearranging yields A−1j AiX =

XBjB
−1
i . The relative poses A = A−1j Ai and B = BjB

−1
i

represent the motions between the poses i and j of the tool
and of the calibration object, respectively. Finally, the hand-eye
calibration must solve

AX = XB (2)

with respect to the unknown X . Simple linear algorithms
typically handle rotation and translation separately [12], [13].
This results in rotational errors propagating and increasing
translational errors. More advanced linear methods, typically
based on screw theory (see section II-A for a short introduction
to screw theory), avoid this by solving for rotation and trans-
lation simultaneously [1], [14], [15]. Based on the results of
linear methods, nonlinear optimizations can be used to further
improve accuracy [1], [15], [16].

Another class of approaches computes X and Y simulta-
neously [17]–[19].

B. Hand-Eye Calibration of SCARA Robots

Unfortunately, it is not possible to simply apply the
methods for articulated robots to SCARA robots. In [13],
the authors state that the error of the hand-eye calibration
of articulated robots is inversely proportional to the sine of
the angle between the screw axes (robot motions can be
represented by screws, see below). Because the rotation axes
of SCARA robots are parallel, all screw axes are parallel, too.
Consequently, the error would be infinite. In particular, it is
shown in [14] that if all screw axes are parallel, one parameter
cannot be determined by the hand-eye calibration.

The hand-eye calibration of SCARA robots has drawn
considerably less attention compared to articulated robots. In
[20] and [21], linear methods are presented for solving the
rotational part of the hand-eye calibration that work for robots
with only one degree of freedom in rotation. Both approaches
assume restricted specifically designed robot motions during
calibration. In [5], a linear solution is presented that does
not impose such restrictions on the robot motion while the
calibration data is gathered. The linear solution is then used as
an initial condition within an iterative optimization framework
to further improve the accuracy. The author emphasizes that
only up to five of the six unknown pose parameters can be
determined and claims that the missing sixth parameter is
irrelevant for the pose measurement of the sensor. Like [12]
and [13], the linear method proposed in [5] solves for rotation
and translation separately, which also results in the disadvan-
tage that rotational errors propagate and increase translational
errors.

In this paper, we extend the approach of [1], which is based
on dual quaternions and handles rotation and translation simul-
taneously, for the calibration of SCARA robots. Furthermore,
we show that for practical applications it is indeed necessary to
know all of the six pose parameters. Therefore, we propose a
pragmatic solution to determine the unknown sixth parameter.
Finally, experiments on synthetic as well as on real data are
presented.

II. HAND-EYE CALIBRATION OF SCARA ROBOTS USING
DUAL QUATERNIONS

A. Screw Theory

To better understand the relation between the motion of
the tool and calibration object, screw theory can be used. It
was first proposed for hand-eye calibration in [14]. A screw
(d, θ, ~L) describes a 3D rigid transformation (rotation and
translation) through a translation d along the screw axis ~L and



a rotation by the rotation angle θ around the same axis. It is
known from Chasles’ theorem that any rigid 3D transformation
can be described by a screw [1].

In [14], the motions A and B in (2) are expressed as
screws. This allows to simultaneously solve for rotation and
translation during hand-eye calibration. Because the calibration
object is rigidly connected to the robot tool, the transfor-
mation between both coordinate systems is constant over
time. The screws A and B represent the same rigid 3D
transformation seen from different coordinate systems. The
hand-eye calibration problem can be interpreted as finding the
rigid transformation that aligns both screws [1]. The screw
congruence theorem further tells us that the rotation angle θ
and the translation d of two screws are identical if one screw
is the result of a rigid transformation applied to the other
screw [14]. Consequently, the task of aligning screws reduces
to aligning their screw axes, i.e., lines, in 3D space.

In [14], it is shown that at least two non-parallel robot
motions are necessary to fix all degrees of freedom of the
alignment of screw axes. For SCARA robots, all rotation axes,
and hence all screw axes, are parallel to the z axis of the robot
base coordinate system. Two parallel motions only fix five of
the six parameters of the unknown transformation between the
base and camera coordinate system. Therefore, for SCARA
robots, the translation tz along the z axis of the robot base
coordinate system is undetermined [5], [14].

Screw theory is the foundation of the calibration method
for articulated robots presented in [1], which simultaneously
solves for rotation and translation. It will be described and
extended for SCARA robots in the next section.

B. Dual Quaternions

Quaternions q = (q, ~q) with scalar part q and vector part ~q
are an extension of complex numbers to R4. For every rotation
about an axis ~n (‖~n‖ = 1) with an angle θ, there exist two
corresponding unit quaternions q = (cos(θ/2), ~n sin(θ/2))
and −q that each map a vector ~p ∈ R3 to the rotated vector
q(0, ~p)q̄, where q̄ is the conjugate quaternion (q,−~q).

Dual numbers are defined as ẑ = a+ εb with the real part
a, the dual part b, and the dual unit ε2 = 0. Dual 3-vectors
~̂z with orthogonal real and dual parts are a representation of
lines in R3, known as Plücker coordinates, where the real part
is the direction of the line and the dual part is its moment. The
line with direction ~l through the point ~p is ~̂z = ~l + ε(~p×~l).

Dual quaternions are an extension of quaternions to dual
numbers. A general introduction to dual quaternions can be
found in [22], a brief outline is included in [1]. Similar to how
unit quaternions are a tool to easily manipulate rotations in 3D
space, dual unit quaternions can be used as a representation
of rigid 3D transformations. Dual quaternions directly encode
screws and have advantages over homogeneous transformation
matrices when transforming lines in 3D [23].

A dual quaternion q̂ = q + εq′ consists of the quaternions
q (real part) and q′ (dual part) with 4 elements each and is also
often written as a single 8-vector. For unit dual quaternions,
the following two conditions hold:

qq̄ = 1⇒ q>q̄ = 1 (3)

and
q̄q′ + qq̄′ = 0⇒ q>q′ = 0. (4)

C. Hand-Eye Calibration

Dual vectors (lines) can be written as pure dual quaternions
(scalar part 0). The rigid transformations of the screw axes can
be written concisely by using dual quaternions [23]:

â = x̂b̂¯̂x, (5)

where â = a + εa′ and b̂ = b + εb′ are unit dual quaternions
that represent the screws for the tool and the calibration object,
respectively, for a single robot motion. x̂ = x + εx′ is a unit
dual quaternion that represents the unknown transformation X .
In [1], the definition of dual quaternion multiplication is used
to rewrite (5) as

S

(
x
x′

)
= 0 (6)

with the 6× 8 matrix

S =

(
~a−~b [~a+~b]× ~0 ~0

~a′ −~b′ [~a′ +~b′]× ~a−~b [~a+~b]×

)
(7)

encoding the result of the dual quaternion multiplication,
where a = (0,~a), a′ = (0,~a′), b = (0,~b), and b′ = (0,~b′)
represent the screw axes. Stacking the matrices Si from all m

motions results in the 6m×8 matrix T> =
(
S>1 S

>
2 . . .S

>
n

)>
,

which can be decomposed by the SVD as:

T = UΣV >. (8)

For articulated robots, T has rank 6, and hence results in two
vanishing singular values with the two corresponding right
singular vectors ~v7 and ~v8. The set of solutions is the null
space of T : (

x
x′

)
= λ1~v7 + λ2~v8. (9)

The remaining two degrees of freedom can be fixed by
substituting the two unity constraints (3) and (4) into (9). This
leads to a system of two quadratic polynomials in λ1 and λ2,
which can be directly solved for x̂ [1].

For SCARA robots, the rank of the matrix T is 5 in
the noise-free case. This results in three vanishing singular
values and three matching right singular vectors ~v6, ~v7, and
~v8, yielding the set of solutions:(

x
x′

)
= λ1~v6 + λ2~v7 + λ3~v8. (10)

We know that there exists a 1D space of equivalent solutions,
i.e., solutions with identical algebraic error. Therefore, it is
sufficient to obtain one arbitrary solution out of this set (i.e.,
a solution for an arbitrary tz). For this, we set λ3 = 0, and
hence reduce (10) to (9), which again can be solved as describe
above. A geometric interpretation shall justify this approach:
From (10), we know that we have a 3D solution space spanned
by the three 8D vectors. The constraints (3) and (4) represent
a 1D manifold within this solution space. Setting λ3 to 0
restricts the original 3D solution space to a 2D hyperplane.
The intersection of the 1D manifold with the 2D hyperplane
results in a single solution. This assumes that the 1D manifold
always intersects the 2D hyperplane. In [1], it is shown that



(9) always has a solution. Since we reduced the SCARA case
from (10) to (9), it must have a solution, too. It follows that
the 1D manifold always intersects the 2D hyperplane.

In section III-E, we will present methods to determine the
real value of the undetermined tz , which is essential for most
practical applications.

III. IMPLEMENTATION

A. Selection of Robot Motions

In [24], it is pointed out that combining poses into motions
in their chronological order is not the best choice in terms of
numerical stability. Instead, it is proposed to select combina-
tions of poses such that the orientation of the rotation axes of
both poses are maximally different. While this criterion is not
applicable for the calibration of SCARA robots, the basic idea
is still useful.

The first criterion that we apply is the rotation angle of
the screws. If the rotation angle is small, the screw axis is
not well-defined and might be unstable in noisy conditions.
Therefore, robot motions with larger rotation angles should be
preferred.

The second criterion is again based on the screw congru-
ence theorem, which for dual quaternions requires that the
scalar parts of â and b̂ are equal. Because of measurement
errors, inaccuracies of the robot, and noise, this condition is
not perfectly fulfilled. Therefore, motion pairs â and b̂ with
smaller differences in their scalar parts should be preferred.

In [24], a score is computed for all possible pose pairs.
Then, the pairs with highest scores are selected for calibration.
This may result in an unfavorable weighting, where some
robot poses are represented multiple times while others are
completely ignored. We propose the following approach in-
stead: To apply the first criterion, for each pose Ai and Bi

of the n robot poses, find the robot poses Aj and Bj with
maximum rotation angle |ra| + |rb|, where ra and rb are the
screw angles of the corresponding robot motions A = A−1j Ai

and B = BjB
−1
i . This results in n robot motions. To apply

the second criterion, for each pose pair Ai and Bi, find the
pose pair Aj and Bj for which the rotation and translation
components of the corresondings screws A and B differ the
least, i.e., for which the scalar parts of â and b̂ differ the least.
Hence, after eliminating duplicates, up to 2n robot motions are
selected for calibration.

B. Antiparallel Screw Axes

If the camera is mounted such that its z axis is parallel
to the z axis of the base coordinate system, all vectors
~a are either (0, 0, s)> or (0, 0,−s)> (with s = sin(θ/2))
depending on whether the z axes point in the same or in
opposite directions. Furthermore, all vectors ~b are always
either (0, 0, s)> or (0, 0,−s)>. Equation (7) involves a vector
product with the vector ~a + ~b. Therefore, it might happen
that all ~a are antiparallel to the corresponding ~b, and hence
their sum vanishes. In this case, T degrades to rank 4. For
articulated robots, in general the screw axes of most robot
motions are not parallel, even if the z axes of the coordinate
systems are. For SCARA robots, if all screw axes ~a and ~b

point in opposite directions (~a>~b < 0), we propose to applying
a rotation r̂ of 180 ◦ around the x axis to both sides of
(5), yielding r̂â¯̂r = r̂x̂b̂¯̂x¯̂r. By substituting â? := r̂â¯̂r
and x̂? := r̂x̂, we obtain a modified problem formulation
â? = x̂?b̂¯̂x? with â? and b̂ now pointing to the same half
space. After performing the hand-eye calibration, the solution
of the original formulation can be obtained by x̂ = ¯̂rx̂?.

C. Sign Ambiguity of Screws

In the same way that two unit quaternions q and −q
represent the same rotation, every rigid transformation can be
described by two screws q̂ and −q̂. Extracting the translation
and rotation components from both screws results in d+ =
−d− and θ+ = 2π − θ−. The screw congruence theorem that
is assumed in (5) requires da = db and θa = θb. Consequently,
it is important to choose the signs of the screws â and b̂
consistently.

In [14], two approaches for solving the sign ambiguity are
proposed. The first orients the screw axis such that d > 0.
For d close to 0, this method becomes unstable. The second
approach constrains the rotation angle θ to 0 ≤ θ < π, which
becomes unstable for θ close to 0 or π. In [1], the scalar parts,
which represent both θ and d, are checked for equality for all
robot motions. Because for SCARA robots all screw axes are
parallel, it is sufficient to determine the sign only for a single
robot motion and fix the signs of all other motions accordingly.
For this, we select the most unambiguous motion pair as the
reference motion, i.e., the motion pair for which θ differs most
from 0 and π. Then, the screw axes of all other motions are
compared to the axis of the reference motion and flipped if
necessary.

D. Refinement by Nonlinear Optimization

The resulting poses of the described linear approach can be
used as initial values in a nonlinear optimization framework to
further increase the accuracy. For this, we compute the error
matrix

E = toolHcal − toolHbase
baseHcam

camHcal (11)

and minimize

e =

n∑
i=0

tr(EiWE>i ), whereW =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 9

 , (12)

over all n robot poses by using the Levenberg-Marquardt
algorithm. The matrix W balances the different number of
entries in E for rotation and translation (9 and 3, respectively).
Furthermore, the translation part of all input matrices is scaled
by 1/D, where D is the maximum extent of the workspace
defined by the robot poses. This ensures that the results
are scale-invariant and errors in rotation and translation are
weighted appropriately. Because tz cannot be determined, the
minimization is performed by varying only 11 of the 12 pose
parameters and leaving tz fixed.



E. Determination of the Real tz

For most practical applications, it is essential to know tz .
Otherwise, objects for which the pose was determined in the
camera coordinate system cannot be grasped by the robot. The
following approach works well in practice:

Let us assume that toolHcal and baseHcam (see (1)) are
known from the calibration up to the z component of the
translation part of toolHcal. To determine z, the calibration
object is detached from the robot and placed at an arbitrary
position such that it can be observed by the camera. The
pose of the calibration object is then automatically determined
in the camera coordinate system to obtain camH̃cal. From
this, we can compute the z component of the translation of
baseH̃cal = baseHcam

camH̃cal, which we will denote zcalib.
Then, the tool of the robot is manually moved to the origin
of the calibration object, which gives us toolH̃base. The z
component of the translation of baseH̃tool represents the true
translation and is denoted as ztrue. ztrue and zcalib represent
the same physical distance, and hence must be identical. This
can be achieved by modifying the z component of toolHcal by
ztrue− zcalib. Finally, baseHcam can be computed by closing
the chain of transformations (1).

The case of a moving camera can be treated similarly.
However, for some setups it is not possible for the camera
to observe the calibration object if the tool is moved to the
origin of the calibration object. Let us assume that baseHcal

and camHtool are known from the calibration up to the z
component of the translation part of baseHcal. In this case, the
robot is manually moved to two poses. First, the tool is moved
such that the camera can observe the calibration object. Now,
an image of the calibration object is acquired and the tool pose
is queried, which gives us camH̃cal and baseH̃tool. Second,
the tool of the robot is moved to the origin of the calibration
object, yielding base ˜̃Htool. ztrue is the z component of the
translation of toolH̃base

base ˜̃Htool. zcalib is the z component
of the translation of toolHcam

camH̃cal. Again, ztrue − zcalib
can be used to correct the z component of baseHcal.

Actually, it is sufficient in the above approaches to move
the tool to a point with the same z coordinate in the base
coordinate system as the origin of the calibration object.
Sometimes, however, the origin or even a point with the same z
coordinate cannot be reached by the tool. In this case, the tool
should be moved to a point with known height (i.e., vertical
distance in z direction of the base coordinate system) above
or below the origin. The z component of the transformation
must additionally be corrected by this height.

IV. EXPERIMENTAL RESULTS

We tested our algorithms on synthetic and real data. For
the experiments with synthetic data, we simulated different
setups with a stationary camera, which was mounted about
1.5 m above the robot base and a calibration object that was
attached to the robot tool at a distance of about 0.2 m. The
robot poses were randomly created within a workspace of size
0.6× 0.6× 0.6 m3.

In the first experiment, we investigated the influence of
noise on the accuracy of the calibration. For this, we added
noise of different amplitudes to the position and rotation

components of camHcal, while assuming error-free robot
poses toolHbase. For each noise amplitude, we created 15
random robot poses, performed the calibration, and repeated
the experiment 500 times. Fig. 2(a) and (b) show the mean
position and rotation errors of the resulting pose baseHcam

for the linear approach using dual quaternions and for the
nonlinear optimization. All errors increase linearily with the
noise amplitude. Furthermore, the advantage of the subsequent
nonlinear optimization is clearly visible.

In the second experiment, we investigated the influence of
the number of robot poses on the accuracy of the calibration.
For this, we kept the noise magnitude fixed at 0.4 mm and
0.1 ◦ and repeated the experiment 500 times again. Fig. 2(c)
and (d) show the corresponding mean errors. It should be
noted that the errors rapidly decrease for the first 10 images.
Further increasing the number of poses only slightly improves
the accuracy.

For the experiments with real data, we attached a HAL-
CON calibration plate to the tool of a DENSO robot HS-
45452E/GM. A calibrated camera (IDS uEye UI-2240-M, 1/2”,
1280×1024, f =16 mm) was mounted stationary 0.9 m above
the robot. At each of 12 calibration poses, we acquired an
image of the calibration plate and determined camHcal by
using HALCON [4, chapter 3.9]. The hand-eye calibration
using the linear approach results in RMS / maximum errors of
0.30 mm / 0.60 mm in translation and 0.06 ◦ / 0.11 ◦ in rotation.
The nonlinear optimization further decreases the errors to
0.20 mm / 0.31 mm in translation and 0.05 ◦ / 0.10 ◦ in rotation.

V. CONCLUSIONS AND OUTLOOK

In [1] a method for hand-eye calibration of articulated
robots based on dual-quaternions is proposed, which shows
advantages over methods that handle rotation and translation
separately. In this paper, we extended the work of [1] to
SCARA robots. For this, we argued why it is feasible to reduce
the three degrees of freedom in (10) by setting λ3 = 0 to the
original problem with two degrees of freedom, which can be
solved easily. In future work we will further justify this aproach
by giving a sound mathematical proof.

To further improve the accuracy, we proposed a subse-
quent nonlinear optimization. We addressed several practical
implementation issues and showed the effectiveness of the
method by evaluating it on synthetic and real data. It was
already shown by [1] that the dual-quaternions-based method is
supperior to the separate estimation of rotation and translation.
Nevertheless, in the future we will extend our evaluation by
comparing our dual-quaternion-based approach to the linear
approach proposed in [5].
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