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Abstract— This paper provides a method for recognizing 3D
objects in a single camera image and for determining their 3D
poses.

A model is trained solely based on the geometry information
of a 3D CAD model of the object. We do not rely on texture
or reflectance information of the object’s surface, making this
approach useful for a wide range of industrial and robot ap-
plications and complementary to descriptor-based approaches.

A view-based approach that does not show the drawbacks
of previous methods is applied: It is robust to noise, occlusions,
clutter, and contrast changes. Furthermore, the 3D pose is
determined with high accuracy. The high robustness of an
exhaustive search is combined with an efficient hierarchical
search, a high percentage of which can be computed offline,
making our method suitable even for time-critical applications.

The method is especially suited for, but not limited to, the
recognition of untextured objects like metal parts, which are
often used in industrial environments. It allows, for example,
3D pin picking in robot applications. Tracking approaches can
use it for initialization.

I. INTRODUCTION

In industrial or robot applications, often untextured objects
like the two metallic clamps shown in Fig. 1(a) must be
recognized in monocular images. Obviously, the automation
level of many industrial processes could be improved sig-
nificantly if the pose of such objects could be determined
reliably. However, there is no published technique that is
able to robustly recognize an untextured 3D object in a
monocular image in a reasonable amount of time. Thus,
e.g., the problem of making a robot pick up objects with
an unknown pose is still not solved in general. Furthermore,
often a setup consisting of two or more cameras cannot be
used because it is either too expensive, too cumbersome to
calibrate, not rigid enough for industrial environments, or
simply too bulky.

II. RELATED WORK

Approaches for recognizing 3D objects in monocular im-
ages have been extensively studied. One challenge is the very
large six-dimensional search space if the object is imaged
from an unknown viewpoint.

For a time, view-based approaches were very popular. The
search image was compared with precomputed 2D views
of the object to determine the object pose ([1], [2], [3],
[4]). These approaches tried to deal with the full geometric
search space by clustering the views. None of them became
accepted in practice. This decreased the interest in this kind
of approaches. Some view-based approaches use previous
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Fig. 1. (a) Image of two differently colored metallic clamps in a cluttered
environment. Our approach is able to detect these objects reliably. (b) CAD
model of the clamp shown in (a) that serves as input for the model
generation. For visualization purposes, hidden edges as well as edges
between coplanar faces are not displayed.

knowledge to reduce the search space, e.g., [5], which
assumes that the object is lying on a conveyor belt and
therefore appears in a known distance in front of the camera.

Other approaches try to circumvent the large geometric
search space. Feature-based approaches ([6], [7], [8], [9]) use
features like gray value edges, intersections of straight lines
that approximate gray value edges, or more complex features
that result from grouping extracted primitives. They assume
that these features correspond either to texture edges or to
geometric edges or corners of the 3D object. The extracted
features are matched to the corresponding 3D object features.
Then, the 3D pose of the object is calculated directly
from the corresponding points. These approaches circumvent
the geometric search space that results from the unknown
object pose. However, they must deal with the search space
that results from the establishment of the correspondences
between the image features and the object features, which
can be very large as well. Clutter in the scene increases the
amount of extracted features and thus the search space. More
complex features can be used to reduce the search space, but
then the feature extraction becomes less robust, especially
if parts of the object are occluded or object edges are not
clearly visible. This makes these approaches unsuitable for
real applications. Recent approaches use graphics hardware-
accelerated implementations for speed-up. For example, [10]
perform an exhaustive search by implementing the General-
ized Hough Transform on graphics hardware. By exploiting
the huge parallelization potential they achieve computation
times of less than one minute. Despite the great speed-up, it
is still too slow for most practical applications. Furthermore,
the Generalized Hough Transform shows only a limited
robustness to contrast changes because only edges above a
pre-defined threshold are taken into account.



Descriptor-based methods ([11], [12], [13], [14], [15],
[16], [17]) first create artificial views of the object in which
feature points are determined together with discriminative
descriptors that are derived from the surroundings of the
feature points. Based on these descriptors, a classifier is
trained. Then, in the search phase the correspondence be-
tween the model and the search image is established by
classifying the descriptors derived from the search image.
The big advantage of descriptor-based approaches is that
their run-time is independent of the size of the geometric
search space. They show outstanding performance in several
scenarios but they are restricted to the recognition of textured
objects because only then meaningful descriptors can be
determined.

There exist tracking approaches ([18], [19]) that are able
to determine the pose of 3D objects based on their geometry.
However, they do not need to deal with the above mentioned
search space because the approximate object pose is known.

III. CHALLENGES AND MAIN CONTRIBUTIONS

In this paper, a model is automatically trained from a 3D
CAD model after specifying the range of poses in which the
object may appear in front of the camera. During the training,
only the object’s geometry information that is important
for the recognition process is included in the model. The
advantage of this approach is that objects with or without
textured surfaces can be recognized. The main task of the
training is to derive a hierarchy of 2D views of the object that
can be used to find the object efficiently in an image. During
the recognition, each found object candidate is evaluated and
its pose is computed by minimizing a geometric distance
measure in the image.

One major problem occurs when dealing with such a
view-based approach. The six degrees of freedom of an
object in 3D space lead to a huge number of 2D views
that must be compared to the image. This leads to run-times
that are in no way suitable for real applications. Therefore,
most view-based approaches try to reduce the complexity by
using a view sphere, i.e., precomputing views, for which
the camera is placed on the surface of a virtual sphere
around the object looking to the center of the object. The
advantage of this approach is that only three degrees of
freedom are sampled offline: the latitude and longitude of
the camera on the sphere, and the radius of the sphere. The
resulting views are compared online to the image, where
the remaining three degrees of freedom must be considered
by translating and rotating the view in the image plane.
Unfortunately, for time-critical applications there still are too
many views that must be translated, rotated, and compared
to the image. Additionally, this approach does not cover the
original six degrees of freedom as is often believed: If the
object does not appear in the center of the image this view
is related to the sampled (centered) view by a 2D projective
transformation because the transition between both views
corresponds to a rotation of the camera around its optical
center. Consequently, to take this effect into account one
would additionally have to projectively transform the 2D

view depending on the image position before comparing it to
the image, which would introduce a dramatic speed penalty.
Ignoring this effect introduces an error that decreases the
robustness of the recognition considerably.

The first main contribution of this paper is a hierarchical
view-based approach that combines a pyramid search with a
hierarchy of object views. With this, on the top pyramid level
only few views must be investigated. This allows to apply
an exhaustive search, which is very robust, but would be too
expensive without the hierarchial approach. Furthermore, the
above mentioned errors normally introduced when using a
view sphere can be compensated.

To be able to apply a pyramid approach using image
pyramids, the model must be available in different resolutions
or generalization levels, respectively. The generalization of
a 3D model such that it corresponds to the generalization
that is introduced by the use of an image pyramid is very
difficult. Furthermore, edges between faces of the model that
have a similar face orientation should not be used for the
matching. The second main contribution of this paper is an
image generation method that projects the geometry of a 3D
model into a color image from which a 2D model on different
generalization levels can easily be derived and which allows
to ignore edges between faces of similar orientation.

Finally, view-based approaches have the drawback that
the accuracy of the resulting object pose is limited to the
density of the sampled views. Therefore, a subsequent pose
refinement step is indispensable. Unfortunately, this is a
highly non-linear problem that must be solved iteratively.
Because the object must be projected online at each iteration,
in general this is a very time consuming process. Therefore,
the third main contribution of this paper is an efficient way
to refine the pose of the object.

IV. DETAILED DESCRIPTION OF THE APPROACH

A. Geometric camera calibration

Geometric camera calibration is a prerequisite for the
extraction of precise 3D information from imagery. We
assume a pinhole camera with radial distortions. The camera
model and the complete calibration process is described
in [20]. The radial distortions can easily be eliminated by
rectifying the search image. To speed up this rectification,
a mapping is computed offline during the generation of the
3D model [21].

B. 3D model generation

The input of the model generation step is the triangulated
surface of the object model. Fig. 1(b) shows the CAD
model of the clamp shown in Fig. 1(a). The object mainly
consists of planar surfaces as well as of a cylinder, which is
approximated by several planar faces.

1) Hierarchical view generation: For the generation of the
3D model, different views of the object are created within
some predefined pose bounds. The views are automatically
created by placing virtual cameras around the 3D object
and by projecting the object into the image plane of each
virtual camera. The object is assumed to be at the center
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Fig. 2. Spherical coordinate system of the view sphere. The pose of the
world coordinate system (xw ,yw ,zw) with respect to the camera coordinate
system (xc,yc,zc) can be described by longitude (λ), latitude (ϕ), and
distance (d). The pose range is described by minimum and maximum values
for λ, ϕ, and d.

of a sphere that defines a spherical coordinate system. The
virtual cameras, which are used to create the views, are
arranged around the object in such a way that they all
point to the center of the sphere. The pose range can
then be restricted to a certain spherical quadrilateral (see
Fig. 2) by specifying intervals for the spherical parameters
λ (longitude), ϕ (latitude), and d (distance).

The sampling of the views within the pose range is auto-
matically determined during the model generation process to
maximize robustness and speed of the recognition. To further
increase the speed of the recognition, the model is created on
multiple levels of an image pyramid. Because higher pyramid
levels allow a coarser sampling of the views, the computation
of the views is performed for each pyramid level separately.

The view sampling starts on the lowest image pyramid
level by applying an over-sampling of the views. Then the
similarity between all views of neighboring camera positions
is computed by applying the similarity measure that is used
in the online-phase (see below). The pair of views with the
highest similarity is selected and merged into one view, and
the similarities between the new view and its neighboring
views are computed. This process is repeated until the highest
similarity is below a certain threshold.

If no pair of object views whose similarity exceeds the
threshold is left, the remaining views are copied into the
3D model. The views computed so far are stored in the
lowest (original) pyramid level. In Fig. 3(a), for all views
on the lowest pyramid level the corresponding cameras that
are obtained when applying the described method to the
pose range shown in Fig. 2 are visualized. To derive the
views on the next higher pyramid level, the merging is
continued while relaxing the similarity constraint. For this,
the similarity measure is computed on the sub-sampled image
of the corresponding image pyramid level. This automatically
relaxes the similarity constraint since smaller dissimilarities
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Fig. 3. Resulting model views on pyramid level 1 (a), level 2 (b), level
3 (c), and level 4 (d). The views are visualized by small square pyramids
that represent the cameras.

are eliminated by reducing the image resolution. If no pair
of object views whose similarity exceeds the threshold is
left, the remaining views are copied into the corresponding
level of the 3D model. In Fig. 3(b)–(d) the resulting views
on higher pyramid levels are shown. In this example, it is
sufficient to distinguish only four different views on the
fourth pyramid level.

Additionally, at each view a reference to all child views
is stored. The child views are those views on the next lower
pyramid level that have been merged to obtain the view
on the current pyramid level or the view that could not be
merged. The references are stored in a tree structure. This
information is used in the online-phase to query for a given
view on a higher pyramid level the views on the next lower
pyramid level that are used to refine the matches. A similar
idea has been introduced in [22]. However, in contrast to
[22] we compute the hierarchy not only over different object
shapes (or views in our case) but additionally over different
image pyramid levels.

2) Model image generation: After the tree has been
completely generated, for each pyramid level and each view
on this level, a 2D model is created by using the approach
presented in [23]. It uses a similarity measure that is robust
to occlusions, clutter, and non-linear contrast changes. The
2D model consists of a plurality of edge points with a cor-
responding gradient direction vector. The similarity measure
is the mean of the absolute values of the dot products of
the corresponding normalized edge gradient directions in the
model and in the search image (see below). To build the 2D
model, the geometry of the object is projected into the image
plane using the camera pose that is represented by the current
view. Hidden lines are eliminated by using an appropriate
hidden-line-algorithm, e.g., [24]. The projection is done in
such a way that a 3-channel color image is obtained, where
the three channels represent the three elements of the normal



vector of the faces of the 3D object. This has the advantage
that the edge amplitude that can be measured in this color
image is directly related to the angle in 3D space between the
normal vectors of two neighboring faces of the 3D object.
Let us assume that the normal vectors of two neighboring
faces are n1 = (x1, y1, z1)� and n2 = (x2, y2, z2)� . When
creating the 3-channel image, the first face is painted into
the image using the color (R1, G1, B1) = (x1, y1, z1) while
the second face is painted into the image using the color
(R2, G2, B2) = (x2, y2, z2). Let us further assume without
loss of generality (because of the isotropy of the color tensor,
see below) that the two projected faces cause a vertical edge
in the image. Then, the first derivatives in row direction
are grR = grG = grB = 0 and in column direction are
gcR = R2 − R1, gcG = G2 − G1, and gcB = B2 − B1.
The edge amplitude in a color image can be obtained by
computing the eigenvalues of the color tensor C [25]:

C =
(

grr grc
grc gcc

)
(1)

where in the case of a 3-channel image

grr = grR
2 + grG

2 + grB
2

grc = grRgcR + grGgcG + grBgcB

gcc = gcR
2 + gcG

2 + gcB
2 (2)

Substituting the above derivatives yields:

C =
(

0 0
0 (R2 − R1)2 + (G2 − G1)2 + (B2 − B1)2

)

(3)
Then, the edge amplitude A is the square root of the largest

eigenvalue of C, and hence

A =
√

(R2 − R1)2 + (G2 − G1)2 + (B2 − B1)2 (4)

Thus, the edge amplitude computed in the image corresponds
to the length of the difference vector of the two normal
vectors. The two normal vectors (of length 1) span a two-
dimensional isosceles triangle. Finally, the angle between
both normal vectors can be easily derived from the edge
amplitude by using the following formula:

δ = 2 arcsin(A/2) (5)

The obtained color image of the projected model serves as
the model image and is passed to the model generation step
of the approach presented in [23], extended by color edge
extraction. First, the edge amplitude in the model image is
computed [25]. Only pixels that exceed a certain threshold
are included in the model. Often, the 3D description of
the model contains many edges that are invisible in a true
image of the object. For example, such edges result from
triangulation methods of the CAD software that are used to
approximate curved surfaces by a sufficient number of planar
faces. Consequently, these edges must not be included in
the 2D model. For example, the edges of the planar faces
that approximate the cylindrical hole in Fig. 1(b) must be
suppressed. Because of the relation described above, one can
suppress such edges by passing an appropriate threshold for

(a) (b)
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Fig. 4. One generated model image (a) and extracted edges after applying
a threshold on the color edge amplitude that corresponds to a minimum face
angle of 5◦ (b), 15◦ (c), and 50◦ (d).

the minimum face angle δmin, which is very intuitive. Then
the minimum angle can easily be transformed to a threshold
value Amin that can be applied to the edge amplitude by
solving (5) for A.

Fig. 4(a) shows the resulting model image of one sample
view. In Fig. 4(b) the edges that result when setting δmin =
5◦, and hence Amin = 0.087, are visualized. Because the
planar faces that approximate the cylinder occur in 8 ◦ steps,
the vertical edges are still visible. The edges that are obtained
when setting δmin = 15◦ (Amin = 0.261) are shown
in Fig. 4(c). The edges of the cylinder are successfully
suppressed. For most models δmin = 15◦ works well and
does not need adaptation. Thus, the novel generation of 3-
channel model images enables the use of existing 2D edge-
based matching approaches by simply passing a threshold
for the edge amplitude to eliminate edges that are invisible
in a real image. It also has the advantage that the problem
of generalizing a 3D model when using a pyramid approach
becomes unnecessary because the generalization is implicitly
done by computing the image pyramid of the model image.

Finally, the 2D model is generated from the 3-channel im-
age on the associated image pyramid level (see [23] and [25]
for details). The 2D model created on the current pyramid
level is automatically rejected if it does not show enough
distinct characteristics that are necessary to distinguish the
model from clutter in the image (see [21] for details).

The 3D model consists of a plurality of 2D models on sev-
eral pyramid levels. For each 2D model, the corresponding
3D pose is stored. Additionally, 2D models on neighboring
pyramid levels are connected in form of the tree described
above.

C. 3D object recognition

In the online-phase the created 3D model is used for
recognizing the 3D object in a single camera image and
for determining the 3D pose of the object with respect to



the camera coordinate system. First, an image pyramid is
built from the input image. The recognition starts at the
highest pyramid level on which at least one valid 2D model is
available. All 2D models on this pyramid level are searched
by computing a similarity measure c [23] between the 2D
models of the views and the current image pyramid level.
It measures the mean orientation difference between the
gradients mi of the n 2D model points and the underlying
gradients si in the search image by using the dot product
denoted by 〈., .〉:

c =
1
n

n∑
i=1

|〈mi, si〉|
‖mi‖ · ‖si‖ (6)

This measure is robust to occlusions, clutter, contrast
changes, and local polarity changes. The 2D models are
rotated and scaled in the necessary range and the similarity
measure is computed at each position of the scaled and
rotated 2D models in the image. The 2D poses (position,
rotation, scaling) of matches that exceed a certain similarity
threshold are stored in the list of match candidates. On the
next lower pyramid levels all 2D models that do not have a
parent node in the tree are searched in the same way as the
views on the highest pyramid level. Additionally, the match
candidates that have been found on the previous pyramid
level are refined. The refinement is performed by selecting all
child views in the tree and computing the similarity measure
between the 2D models of the child views and the current
image pyramid level. However, the range of investigated
positions, rotations, and scalings can be limited to a close
neighborhood of the parent match. This process is repeated
until all match candidates are tracked down to the lowest
pyramid level. The combination of a pyramid approach with
hierarchical model views that are arranged in a tree structure
is essential for time-critical applications.

Because the 2D models are created during the training
by assuming a camera that is directed to the object center,
the 2D model and the imaged object are related by a 2D
homography. An example is shown in Fig. 5. The black
projection shows a view where the camera is directed to the
center of the object. From this view, a 2D model was created.
During the search, the object might appear in arbitrary image
positions, as shown by the red projections in the image
corners of Fig. 5. This apparent movement in the image plane
in reality corresponds to a rotation of the camera around its
optical center. Consequently, the search will fail if the object
does not appear close to the image center because during the
2D matching only a similarity transformation is taken into
account. Therefore, we transform the 2D model by applying
the homography before performing the matching. This is
an absolutely essential step that has not been applied in
previous view-based recognition approaches. The parameters
of the homography are computed based on the position of
the object in the image that is approximately known from
the next higher pyramid level.

Let x be the 2D model point generated by projecting
the 3D model into the image plane using a camera that

Fig. 5. Center view of the object (black) and two off-center views (red)
that are obtained when rotating the camera around its optical center. Note
the significant projective distortions of the off-center views with respect to
the center view.

is directed to the model center. Furthermore, let K be the
camera calibration matrix and R be a camera rotation matrix
that describes the deviation from a model centered view.
Then the point x′ in the image of the rotated camera is

x′ = KRK−1x = Hx, (7)

where H is a homography. The unknown rotation matrix can
be derived from the position p = (c, r, 1) of the projected
model in the image, which is transformed into a direction
P in 3D space by P = K−1p. The rotation angles of
R around the x and y axis of the camera is computed
by α = arctanPy/

√
P 2

z + P 2
x and β = arctanPx/Pz ,

respectively. Finally, the matching is performed with the
projectively corrected 2D models of the child views.

On the top pyramid level, an exhaustive search must be
performed because no previous knowledge is available. Thus,
the matching is performed at all image positions. However,
projectively transforming the models depending on the cur-
rent image position would be too expensive. Fortunately, on
the highest level in general the projective distortions are very
small because of the subsampling that comes with the image
pyramid. To further reduce the distortions on the top pyramid
level, the planar 2D model as well as the image is mapped
to the surface of a sphere before applying the matching
on the highest pyramid level. Then, the projection does not
change when rotating the camera around its optical center.
Unfortunately, there is no mapping from the sphere into the
plane without introducing distortions. However, in general
these distortions are smaller than the projective distortions.
To speed up the spherical mapping of the search image, the
mapping is pre-computed offline. The tracking through the
pyramid is performed in the original (non-spherical) image
as described above.

As result of the matching one obtains the 2D poses
(position, rotation, scaling) of the 2D matches in the image
that exceed a certain similarity measure. For each match, the
corresponding 3D object pose is computed based on the 2D
matching pose and the 3D pose of the model view that is
associated with the match. Let the 3D pose of the model
view be expressed as a homogenous 4×4 matrix Hv, which
transforms points from the object coordinate system into the
camera coordinate system. Furthermore, the 2D matching



pose is given by p = (r, c, 1)� (position), γ (rotation), and
s (scaling). Then the matrix Hv must be modified such that
it reflects the 2D matching pose. First, the 2D scaling is
applied, which is interpreted as the inverse isotropic scaling
S of the distance between object and camera. Then, the 2D
rotation is applied, which is interpreted as a 3D rotation Rz

of the camera around its z axis. Finally, the position in the
image is interpreted as a 3D rotation of the camera around
its x and y axis. The two rotation angles can be computed
by transforming the position into a direction in 3D space and
subsequently into rotation angles α and β in a similar way
as described above. This results in the final homogeneous
transformation matrix, which describes the 3D pose of the
object with respect to the camera coordinate system:

Hv,s,γ,p = Ry(β)Rx(α)Rz(−γ)S(1/s)Hv (8)

D. Pose refinement

The accuracy of the obtained 3D pose is limited to the
sampling of the views and the sampling of the 2D poses
during the 2D matching. For practical applications, this is
insufficient. The refinement of the 3D pose is performed
by using a least-squares adjustment. For this, the 3D ob-
ject is projected into the search image by using the pose
Hv,s,γ,p. During the projection the hidden-line algorithm
is used to suppress lines that are invisible in the current
pose. In addition, lines that represent object edges at which
the angle between the two adjacent object faces is below
the specified minimum face angle (see Section IV-B.2) are
suppressed. The visible projected model edges are sampled
to discrete points using a suitable sampling distance, e.g.,
1 pixel. For each sampled edge point, a local search is
initiated to find the corresponding subpixel-precise image
edge point in the neighborhood of the sampled edge point.
The search is restricted to a direction that is perpendicular
to the projected model edge. Additionally, for each found
potential correspondence, the angle difference between the
perpendicular to the projected model edge and the image
gradient is computed. Only the correspondences with an
angle difference below a threshold are accepted as valid
correspondences. Finally, the refined 3D pose is obtained
through a robust iterative non-linear optimization using the
Levenberg-Marquardt algorithm. During the optimization the
squared distances of the image edge points to their corre-
sponding projected model edge are minimized directly over
the 6 pose parameters. After the minimization, the refined
pose parameters are available.

Because from the refined pose parameters new correspon-
dences can arise, the optimization algorithm is integrated
within an outer iteration loop. Actually, the model would
have to be re-projected using the hidden-line algorithm and
the correspondences would have to be re-computed after
each iteration. Unfortunately, the hidden-line computation
requires a significant amount of computation time, which is
too expensive for time-critical applications, especially when
using a complex 3D model that consists of many faces.
Therefore, the hidden-line algorithm is only applied in the

first iteration. From the result of the hidden-line algorithm
in the first iteration, the two end points of the visible part of
each projected model edge are available in the image. Each
end point together with the optical center defines a line of
sight in 3D. The two lines of sight are intersected with the
3D model edge. The two intersections define the part of the
3D model edge that is visible in the initial pose. In further
iterations, not the complete 3D model edge but only the part
that was visible in the first iteration is projected. This speeds
up the pose refinement significantly because no hidden-line
algorithm needs to be applied. In most cases the error that
is introduced by this simplification only marginally degrades
the obtained accuracy because the initial pose is already close
enough to the optimum to prevent significant changes in the
perspective.

V. EVALUATION

As a first step of evaluation we simulated various objects.
If the search range overlapped the simulated range of poses,
they were detected without exception. This is the benefit of
the applied exhaustive search. For the evaluations with real
objects, we acquired 8 bit gray scale images of size 640 ×
480 with a focal length of 8.5 mm, where the objects where
placed in a distance range between 150–350mm in front of
the camera. All tests were performed on a 2.33 GHz Intel
Xeon E5345. Two different objects (clamp and fuse) were
used for the evaluation. The models were created within the
pose range λ = ϕ = [−50; +50]◦ and d = [150; 200]mm for
the clamp model and d = [250; 350]mm for the fuse model.

The number of sampled views on the different pyramid
levels are 9989, 1420, 299, 79, 38, and 17 (level 1–6) for
the fuse model and 1110, 281, 86, 34, and 16 (level 1–5)
for the clamp model. Note the immense reduction of 9989
to 17 views and 1110 to 16 views, respectively, when using
our hierarchical approach.

To measure the accuracy, we acquired 50 images of each
object by moving the camera to different poses. Next to
the object, we placed a calibration plate with black circular
marks of which the centers are known in world coordinates
(see Fig. 6(a) and (b)). We computed the pose of the
calibration plate with respect to the camera in each image by
using a standard pose estimation algorithm. By determining
the mean relative pose of the object with respect to the
calibration plate we were able to compute a true pose of the
object for each image. This pose was compared to the pose
that was returned by our recognition approach. The result
is shown in Table I. Note the high accuracy, especially the
standard deviation of the position, which is 0.2% with respect
to the object distance. The respective values that are obtained
when switching off the pose refinement step are displayed
in parantheses. The benefit of the pose refinement is evi-
dent. To illustrate the difference between our approach and
the descriptor-based matching, we compared our approach
with the descriptor-based matching approach proposed in
[16]. The descriptor model was trained to recognize the
object’s plane that provides the most texture information.
For the fuse, the accuracy of the results is significantly worse
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Fig. 6. Two of 100 images used to measure the accuracy of the computed
object poses. The true pose was obtained by placing a calibration plate with
known black circular marks next to the object.

whereas the recognition is faster by a factor of 50. For the
clamp, the descriptor-based method was not able to find any
instance of the object. These results are very typical: As soon
as the object shows significant texture, the descriptor-based
methods will find the object quickly. But it is impossible to
recognize untextured objects with descriptor-based matching
approaches.

We also compared our approach with a feature-based ap-
proach similar to [26] that uses corresponding 2D-3D points.
This approach was in no way robust to clutter and occlusions
and especially for cluttered images it was much too slow. The
low robustness mainly resulted from the problem of reliably
extracting the 2D feature points in scenes with clutter and
occlusions.

To illustrate the robustness to occlusions, clutter, and
contrast changes, in Figs. 7(a) and (b) two example images
are shown in which the fuse could be correctly found. Even
highly textured objects (Figs. 7(c)), objects with curved sur-
faces (Fig. 7(d) and (e)), and objects with strong reflections
(Fig. 7(f)) can be recognized by the appoach.

The breadth-first strategy during the pyramid search allows
to find multiple instances of the same object simultaneously
without the run-time increasing linearly. The two instances
of the clamp object shown in Fig. 1(a), for example, are
correctly recognized in 0.3 s despite the high degree of
clutter, the strong reflections on the metal surfaces, and the
different colors. A video that shows how easy our approach
can be used in practice is provided as supplemental material.

The approach is able to find objects in gray scale or color
images. Tests have shown that the robustness and the speed
are higher when using color images because the additional
information helps to eliminate false positives in an early
stage during the tracking through the pyramid. Future work
will include more extensive evaluations including robustness,
accuracy, and color information.

The major limitation of our approach is that the pose range
should not contain any degenerated views of the object, like
a side view of an (almost) planar object. The risk to wrongly
find such degenerated views is high. For example, the above
mentioned side view would be found at each pair of parallel
edges in the image.

It is also worth noting that our method was already tested
in robot applications. For example, it was used to make a
robot grab fuses like that shown in Fig. 6(b). This demo

application ran for three days without the robot missing a
single fuse.

Last but not least, the exhaustive search on the top
pyramid level as well as the tracking of multiple candidates
through the pyramid provide a high speed up potential by
parallelization.

VI. CONCLUSIONS

A robust and fast method for recognizing a 3D object in
a single camera image and for determining its 3D pose was
presented. Only geometry information is used for recogni-
tion, and hence no texture information is needed. The novel
combination of a pyramid approach with hierarchical model
views that are arranged in a tree structure is essential for
time-critical applications and has not been applied in pre-
vious recognition approaches. The generation of 3-channel
model images enables the use of existing 2D edge-based
matching approaches by simply passing a threshold for the
edge amplitude to eliminate object edges that are not visible
in a real image. The projective transformation of 2D models
during the tracking is essential for a high robustness of the
recognition approach. Finally, a high accuracy is obtained
by applying a 3D pose refinement without performing an
expensive projection in each iteration. Furthermore, optional
methods are provided that efficiently map the model and
the image to a spherical projection to eliminate projective
distortions on the highest pyramid level that in some cases
otherwise would reduce the robustness of the 2D matching.
Computation times of a few hundred milliseconds allow even
time-critical applications to benefit from our approach.
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