
Edge-based Template Matching and Tracking for

Perspectively Distorted Planar Objects

Andreas Hofhauser, Carsten Steger, and Nassir Navab

TU München, Boltzmannstr. 3, 85748 Garching bei München, Germany
MVTec Software GmbH, Neherstr. 1, 81675 München, Germany

Abstract. This paper presents a template matching approach to high
accuracy detection and tracking of perspectively distorted objects. To
this end we propose a robust match metric that allows significant per-
spective shape changes. Using a coarse-to-fine representation for the de-
tection of the template further increases efficiency. Once a template is de-
tected at interactive frame-rate, we immediately switch to tracking with
the same algorithm, enabling detection times of only 20ms. We show in
a number of experiments that the presented approach is not only fast,
but also very robust and highly accurate in detecting the 3D pose of
planar objects or planar subparts of non-planar objects. The approach
is used in augmented reality applications that could up to now not be
sufficiently solved because existing approaches either needed extensive
training data, like machine learning methods, or relied on interest point
extraction, like descriptors-based methods.

1 Introduction

Methods that exhaustively search a template in an image are one of the oldest
computer vision algorithms used to detect an object in an image. However, the
mainstream vision community has abandoned the idea of an exhaustive search.
There are two prejudices that are commonly articulated. First, that an object
detection based on template matching is slow and second, that an object de-
tection based on template matching is certainly extremely inefficient for, e.g.,
perspective distortions where an 8-dimensional search space must be evaluated.
In our work, we address these issues and show that with several contributions
it is possible to benefit from the robustness and accuracy of template matching
even when an object is perspectively distorted. Furthermore, we show in a num-
ber of experiments that it is possible to achieve an interactive rate of detection
that was only possible with a descriptor-based approach until now. In fact, if the
overall search range of the pattern is restricted, real-time detection is possible
on current standard PC hardware. Furthermore, as we have an explicit represen-
tation of the geometric search space, we can easily restrict it and therefore use
the proposed method for high-speed tracking. This is in strong contrast to many
other approaches (e.g., [1]), in which a difficult decision has to be made when to
switch between a detection and a tracking algorithm. One of the key contribu-
tions of any new template matching algorithm is the image metric that is used



to compare the model template with the image content. The design of this met-
ric determines the overall behavior and its evaluation dominates the run-time.
One key contribution of the proposed metric is that we explicitly distinguish
between model contours that give us point correspondences and contours that
suffer from the aperture problem. This allows us to detect, e.g., an assembly part
that contains only curved contours. For these kinds of objects, descriptor-based
methods, that excel as they allow for perspective shape changes, notoriously fail
if the image contains not enough or only a small set of repetitive texture like in
Figure 1.

Fig. 1. An object typically encountered in assembly scenarios. A planar sub-part of
a non-planar object is taken as model region and the detection results are depicted
as the white contours. The different views leads to significant non-linear illumination
changes and perspective distortion. The object contains only curved contours, and
hence extraction of discriminative point features is a difficult task.

1.1 Related Work

We roughly classify algorithms for pose detection into template matching and
descriptor-based methods. In the descriptor-based category, the rough scheme
is to first determine discriminative “high-level” features, extract surrounding
discriminative descriptors from these feature points, and to establish the corre-
spondence between model and search image by classifying the descriptors. The
big advantage of this scheme is that the run-time of the algorithm is independent
of the degree of the geometric search space. Recent prominent examples that fall
into this category are [2–5]. While showing outstanding performance in several
scenarios, they fail if the object has only highly repetitive texture or only sparse
edge information. The feature descriptors overlap in the feature space and are
not discriminating anymore.

In the template matching category, we subsume algorithms that perform
an explicit search. Here, a similarity measure that is either based on inten-
sities (like SAD, SSD, NCC and mutual information) or gradient features is
evaluated. However, the evaluation of intensity-based metrics is computation-
ally expensive. Additionally, they are typically not invariant against nonlinear
illumination changes, clutter, or occlusion.



For the case of feature-based template matching, only a sparse set of fea-
tures between template and search image is compared. While extremely fast and
robust if the object undergoes only rigid transformations, these methods be-
come intractable for a large number of degrees of freedom, e.g., when an object
is allowed to deform perspectively. Nevertheless, one approach for feature-based
deformable template matching is presented in [6], where the final template is cho-
sen from a learning set while the match metric is evaluated. Because obtaining a
learning set and applying a learning step is problematic for our applications, we
prefer to not rely on training data except for the original template. In contrast
to this, we use a match metric that allows for local perspective deformations,
while preserving robustness to illumination changes, partial occlusion and clut-
ter. While we found a match metric with normalized directed edge points in [7,
8] for rigid object detection, and also for articulated object detection in [9], its
adaptation to 3D object detection is new. A novelty in the proposed approach
is that the search method takes all search results for all parts into account at
the same time. Despite the fact that the model is decomposed into sub-parts,
the relevant size of the model that is used for the search at the highest pyra-
mid level is not reduced. Hence, the presented method does not suffer the speed
limitations of a reduced number of pyramid levels that prior art methods have.
This is in contrast to, e.g., a component-based detection like in [9] which could
conceptually also be adapted for the perspective object detection. Here small
sub-parts must be detected, leading to a lower number of pyramid levels that
can be used to speed up the search.

2 Perspective Shape-Based Object Detection

In the following, we detail the perspective shape-based model generation and
matching algorithm. The problem that this algorithm solves is particularly dif-
ficult, because in contrast to optical flow, tracking, or medical registration, we
assume neither temporal nor local coherence. While the location of the objects
are determined with the robustness of a template matching method, we avoid
the necessity of expanding the full search space as if it was a descriptor-based
method.

2.1 Shape Model Generation

For the generation of our model, we decided to rely on the result of a simple
contour edge detection. This allows us to represent objects from template images
as long as there is any intensity change. Note that in contrast to corners or
interest point features, we can model objects that contain only curved contours
(see detection results in Figure 1). Furthermore, directly generating a model
from an untextured CAD format is possible in principle. Our shape model M is
composed of an unordered set of edge points

M =
{
xi, yi, d

m
i , cji, pj |i = 1 . . . n, j = 1 . . . k

}
. (1)



Here, x and y are the row and column coordinates of the n model points. dm

denotes the gradient direction vector at the respective row and column coordi-
nate of the template. We assume that spatially coherent structures stay the same
even after a perspective distortion. Therefore, we cluster the model points with
expectation-maximization-based k-means such that every model point belongs to
one of k clusters. The indicator matrix cji maps clusters to model points (entry
0 if not in cluster, else entry 1) that allow us to access the model points of each
cluster efficiently at run-time. For the later detection we have to distinguish,
whether a cluster of a model can be used as a point feature (that gives us two
equations for the x and y location) or only as a contour line feature (that suffers
from the aperture problem and gives only one equation). This is a label that we
save in for each cluster in pj . We detect this by analyzing whether a part con-
tains only one dominant gradient direction or gradient directions into various,
e.g., perpendicular directions. For this we determine a feature that describes the
main gradient directions for each of the j clusters of the model:

ClusterDirectionj =

∥∥∥∥∥∥

∑n
i=1

dm
i

‖dm
i
‖cji

∑n
i=1 cji

∥∥∥∥∥∥
. (2)

If a model part contains only direction vectors in one dominant direction, the
length of the resulting ClusterDirection vector has the value one or, in case of
noise, slightly below one. In all other cases, e.g., a corner-like shape or directions
of opposing gradient directions, the length of ClusterDirection is significantly
smaller than one. For a straight edge with a contrast change, the sign change
of the gradient polarity gives us one constraint and hence prevents movement
of that cluster along the edge and therefore we assign it a point feature label.
Because the model generation relies on only one image and the calculation of the
clusters is realized efficiently, this step needs, even for models with thousands of
points, less than a second. This is an advantage for users of a computer vision
system, as an extended offline phase would make the use of a model generation
algorithm cumbersome.

2.2 Metric Based on Local Edge Patches

Given the generated model, the task of the perspective shape matching algorithm
is to extract instances of that model in new images. Therefore, we adapted the
match metric of [8]. This match metric is designed such that it is inherently
invariant against nonlinear illumination changes, partial occlusion and clutter.
If a location of an object is described by x, y (this is 2D translation only, but the
formulas can easily be extended for, e.g., 2D affine transformations), the score
function for rigid objects reads as follows:

s(x, y) =
1
n

n∑

i=1

〈dm
i , ds

(x+xi,y+yi)
〉

‖dm
i ‖ · ‖ds

(x+xi,y+yi)
‖ , (3)

where ds is the direction vector in the search image, 〈·〉 is the dot product
and ‖ · ‖ is the Euclidean norm. The point set of the model is compared to a



dense gradient direction field of the search image. Even with significant nonlin-
ear illumination changes that propagate to the gradient amplitude the gradient
direction stays the same. Furthermore, a hysteresis threshold or non-maximum
suppression is completely avoided in the search image, resulting in true invari-
ance against arbitrary illumination changes.1 Partial occlusion, noise, and clutter
results in random gradient directions in the search image. These effects lower
the maximum of the score function but do not alter its location. Hence, the
semantic meaning of the score value is the ratio of matching model points. It is
interesting to note that comparing the cosine between the gradients leads to the
same result, but calculating this formula with dot products is several orders of
magnitudes faster.

The idea of extending this metric for 3D object detection is that we in-
stantiate globally only similarity transformations. By allowing successive small
movements of the parts of the model, we implicitly evaluate a much higher
class of nonlinear transformations, like perspective distortions. Following this
argument, we distinguish between an explicit global score function sg, which is
evaluated for, e.g., affine 2D transformations2, and a local implicit score function
sl, that allows for local deformations. The global score function sg is a sum of
the contributions of all the clusters.

sg(x, y) =
1
n

k∑

j=1

sl(x, y, j). (4)

We assume that even after a perspective distortion the neighborhood of each
model point stays the same and is approximated by a local euclidean transfor-
mation. Hence, we instantiate local euclidean transformations T for each cluster
and apply it on the model points of that cluster in a small local neighborhood.
If the cluster is a point feature we search in a 5×5 pixel window the opti-
mal score. In case of a line feature, we search a 2 pixels in both directions of
ClusterDirectionj of the respective cluster. The local score then is the max-
imum alignment of gradient direction between the locally transformed model
points of each cluster and the search image. Accordingly, the proposed local
score function sl is:

sl(x, y, j) = max
T

size(j)∑

i=1

〈dm
cji

, ds
(x+T (xcji

),y+T (ycji
))〉

‖dm
cji

‖ · ‖ds
(x+T (xcji

),y+T (ycji
))‖

(5)

Here, the function size returns the number of elements in cluster j. For the
sake of efficiency, we exploit the mapping that was generated in the offline phase
for accessing the points in each cluster (the cji matrix). Furthermore, we cache
T (xcji) and T (ycji) since they are independent of x and y.

1 Homogenous regions and regions that are below a minimum contrast change (e.g.,
less than 3 gray values) can optionally be discarded, as they give random directions
that are due to noise. However, this is not needed conceptually, but gives a small
speedup.

2 For sake of clarity we write formulas only for 2D translation. They can easily be
extended for, e.g., 2D rotation, scaling, and anisotropic scaling, as is done in our
implementation.



2.3 Perspective Shape Matching

After defining an efficient score function that tolerates shape changes, we inte-
grated it into a general purpose object detection system. We decided to alter the
conventional template matching algorithm such that it copes with perspectively
distorted planar 3D objects.

Fig. 2. The schematic depiction of the shape matching algorithm. The original model
consists of the rectangle. The first distorted quadrilateral is derived from the parent
of the hypothesis. The local displacements T , depicted as arrows bring the warped
template to a displaced position and the fitted homography aligns the parts of the
model again.

Hence, the perspective shape matching algorithm first extracts an image
pyramid of incrementally zoomed down versions of the original search image. At
the highest pyramid level, we extract the local maxima of the score sg function
(4). The local maxima of sg are then tracked through the image pyramid un-
til either the lowest pyramid level is reached or no match candidate is above a
certain score value. While tracking the candidates down the pyramid, a rough
alignment was already extracted during evaluation of the current candidate’s
parent on a higher pyramid level. Therefore, we first use the alignment origi-
nating from the candidate’s parent to warp the model. Now, starting from this
warped candidate the local transformation T that give the maximal score give
a locally optimal displacement of each cluster to image. Since we are interested
in perspective distortions of the whole objects, we fit a homography with the
normalized DLT algorithm [10] to the locations of the original cluster centers
to the displaced cluster centers given T . Depending whether the clusters have
been classified as point features or as line features each correspondence give as
two or one equation in the DLT matrix3. Then we iteratively warp the whole

3 Typically, the DLT equations are highly overdetermined. We evaluated a solution
with the SVD as described in [10] or directly with the eigenvalue decomposition of
the normal equation. Because there is no noticeable robustness difference, despite
the expected quadratically worse condition number for the solution with the eigen-
value decomposition, but the version with the eigenvalue decomposition is faster we
use in the following discussion the solution with the normal equations. To give an
impression of the difference, in one example sequence the whole object detection
with SVD runs in 150 ms, whereae with eigenvalue decomposition it runs in 50 ms.



model with the extracted update and refine the homography on each pyramid
level until the update becomes near to identity or a maximal number of itera-
tions is reached. Up to now, the displacement of each part T is discretized up
to pixel resolution. However, as the total pose of the object is determined by
the displacements of many clusters, we typically obtain a very precise position
of the objects. To reach a high accuracy and precision that is a requirement in
many computer vision applications, we extract subpixel-precise edge points in
the search image and determine correspondences for each model point. Given the
subpixel precise correspondences, the homography is again iteratively updated
until convergence. Here, we minimize the distance of the tangent of the model
points to the subpixel precise edge point in the image. Hence, each model edge
point gives us one equation since it is a line feature.

2.4 Perspective Shape Tracking

Once an template is found in an image sequence, we restrict the search space for
the subsequent frames. This assumption is valid in, e.g., many augmented reality
scenarios in which the inter-frame rotations can be assumed to be less then 45
degrees and the scaling change of the object be less than 0.8 to 1.2. Once, a track
is lost we switch back to detection by expanding the search range to the original
size. It is important to note that we use the same algorithm for tracking and
detection and only parametrize it differently. Hence, we exploit prior knowledge
to speed up the search if it is available. However, our template matching is not
restricted to tracking alone, like, e.g., [11], but can be used for object detection
when needed.

3 Experiments

For the evaluation of the proposed object detection and tracking algorithm, we
conducted experiments under various real world conditions.

3.1 Benchmark Test Set

For comparison with other approaches we used sample images from publicly
available benchmark datasets4 (see Figure 3). The graffiti sequence is used, for
instance, to evaluate how much perspective distortion a descriptor-based ap-
proach can tolerate. The last two depicted images are a challenge for many
descriptor-based approaches.

Another interesting comparison is with the phone test sequence provided in
[12]. Here, Lukas-Kanade, SIFT and the method of [12] are reported to sometimes
loose the object. The proposed algorithm is able to process the sequence at 60 ms
per image without once loosing the object. We think this is due to the fact that
we explicitly represent contour information and not just interest point features
and because we are able to exhaustively search for the object.
4 http://www.robots.ox.ac.uk/˜vgg/data/data-aff.html



Fig. 3. Benchmark data set with detected template used for evaluations of the method.

Fig. 4. Sample images used for different real world experimental evaluations. The fitted
edge model points are depicted.

3.2 Industrial Robot Experiments

To evaluate the accuracy of the 3D object detection, we equipped a 6 axis in-
dustrial robot with a calibrated camera (12 mm lens, 640 × 480 pixel) mounted
at its gripper. Then we taught the robot a sequence of different poses where
the camera–object distance changes in the range of 30-50 cm and significant
latitude changes must be compensated. First, we determined the repeatability
of the robot, to prevent a drift during different experiment runs. Therefore, we
made the robot drive the sequence several times and determined the pose of
the camera at different runs with an industrial calibration grid that is seen by
the camera. The maximal difference between the poses of different runs was
0.0009 normalized distance error between estimated and ground truth transla-
tional position and 0.04 degrees angle to bring the rotation from the estimated
to the true pose. Then, we manually placed an object at the same place as the
calibration grid and used the planar shape matching with a bundle adjustment
pose estimation to determine the pose of the object (see Figure 4). The maximal
difference to the poses that where extracted with the calibration grid was below
0.01 normalized distance and 0.4 degree angle. It is interesting to note that the
remaining pose error is dominated by the depth uncertainty. The maximal errors
are measured, when the images suffer severe illumination changes or are out of
focus. When these situations are prevented the error of translation is below 0.005
normalized distance and the angle error below 0.2 degree angle.



Fig. 5. Sample images from a longer sequence used in the experimental evaluation.
The first image is used for generating the template of the house. Further movies can
be viewed on the web site: http://campar.in.tum.de/Main/AndreasHofhauser.

3.3 Registering an Untextured Building

To evaluate the method for augmented reality scenarios we used the proposed
approach to estimate the position of a building that is imaged by a shaking
hand-held camera (see Figure 5). Despite huge scale changes, motion blur and
parallax effects the facade of the building is robustly detected and tracked. We
think that this is a typical sequence for mobile augmented reality applications,
e.g., the remote expert situation. Furthermore, due to the fast model generation,
the approach is particularly useful for, e.g., mobile navigation, in which the
template for the object detection must be generated instantly.

To sum up the experimental evaluation, we think that the result are very en-
couraging in terms of speed, robustness and accuracy compared to other methods
that have been published in literature. Applications that up to now relied on in-
terest points can replace their current object detection without the disadvantage
of smaller robustness with regards to, e.g., attitude change. Furthermore, these
applications can benefit of a bigger robustness and accuracy particularly for de-
tecting untextured objects. Since the acquisition of the test sequences was a time
consuming task and to stimulate further research and comparisons we will make
the test data available upon request.

4 Conclusion

In this paper we presented a single-camera solution for planar 3D template
matching and tracking that can be utilized in a wide range of applications. For
this, we extended an already existing edge-polarity-based match metric for toler-
ating local shape changes. In an extensive evaluation we showed the applicability
of the method for several computer vision scenarios.
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