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ABSTRACT

An object recognition system for industrial inspection that recognizes objects under similarity transformations in real time is proposed.
It uses novel similarity measures that are inherently robust against occlusion, clutter, and nonlinear illumination changes. They can be
extended to be robust to global as well as local contrast reversals. The matching is performed based on the maxima of the similarity
measure in the transformation space. For normal applications, subpixel-accurate poses are obtained by extrapolating the maxima of
the similarity measure from discrete samples in the transformation space. For applications with very high accuracy requirements,
least-squares adjustment is used to further refine the extracted pose.

1 INTRODUCTION

Object recognition is used in many computer vision applications.
It is particularly useful for industrial inspection tasks, where of-
ten an image of an object must be aligned with a model of the
object. The transformation (pose) obtained by the object recog-
nition process can be used for various tasks, e.g., pick and place
operations or quality control. In most cases, the model of the ob-
ject is generated from an image of the object. This 2D approach
is taken because it usually is too costly or time consuming to cre-
ate a more complicated model, e.g., a 3D CAD model. Therefore,
in industrial inspection tasks one is usually interested in match-
ing a 2D model of an object to the image. The object may be
transformed by a certain class of transformations, depending on
the particular setup, e.g., translations, euclidean transformations,
similarity transformations, or general 2D affine transformations
(which are usually taken as an approximation to the true perspec-
tive transformations an object may undergo).
A large number of object recognition strategies exist. The ap-
proach to object recognition proposed in this paper uses pixels as
its geometric features, i.e., not higher level features like lines or
elliptic arcs. Therefore, only similar pixel-based strategies will
be reviewed.
Several methods have been proposed to recognize objects in im-
ages by matching 2D models to images. A survey of matching
approaches is given in (Brown, 1992). In most 2D matching
approaches the model is systematically compared to the image
using all allowable degrees of freedom of the chosen class of
transformations. The comparison is based on a suitable similar-
ity measure (also called match metric). The maxima or minima
of the similarity measure are used to decide whether an object is
present in the image and to determine its pose. To speed up the
recognition process, the search is usually done in a coarse-to-fine
manner, e.g., by using image pyramids (Tanimoto, 1981).
The simplest class of object recognition methods is based on the
gray values of the model and image itself and uses normalized
cross correlation or the sum of squared or absolute differences as
a similarity measure (Brown, 1992). Normalized cross correla-
tion is invariant to linear brightness changes but is very sensitive
to clutter and occlusion as well as nonlinear contrast changes.
The sum of gray value differences is not robust to any of these
changes, but can be made robust to linear brightness changes by
explicitly incorporating them into the similarity measure, and to

a moderate amount of occlusion and clutter by computing the
similarity measure in a statistically robust manner (Lai and Fang,
1999).

A more complex class of object recognition methods does not use
the gray values of the model or object itself, but uses the object’s
edges for matching (Borgefors, 1988, Rucklidge, 1997). In all ex-
isting approaches, the edges are segmented, i.e., a binary image
is computed for both the model and the search image. Usually,
the edge pixels are defined as the pixels in the image where the
magnitude of the gradient is maximum in the direction of the gra-
dient. Various similarity measures can then be used to compare
the model to the image. The similarity measure in (Borgefors,
1988) computes the average distance of the model edges and the
image edges. The disadvantage of this similarity measure is that
it is not robust to occlusions because the distance to the nearest
edge increases significantly if some of the edges of the model are
missing in the image.

The Hausdorff distance similarity measure used in (Rucklidge,
1997) tries to remedy this shortcoming by calculating the maxi-
mum of thek-th largest distance of the model edges to the image
edges and thel-th largest distance of the image edges and the
model edges. If the model containsn points and the image con-
tainsm edge points, the similarity measure is robust to 100k/n%
occlusion and 100l/m% clutter. Unfortunately, an estimate form
is needed to determinel, which is usually not available.

All of these similarity measures have the disadvantage that they
do not take into account the direction of the edges. In (Olson and
Huttenlocher, 1997) it is shown that disregarding the edge direc-
tion information leads to false positive instances of the model in
the image. The similarity measure proposed in (Olson and Hut-
tenlocher, 1997) tries to improve this by modifying the Hausdorff
distance to also measure the angle difference between the model
and image edges. Unfortunately, the implementation is based on
multiple distance transformations, which makes the algorithm too
computationally expensive for industrial inspection.

Finally, another class of edge based object recognition algorithms
is based on the generalized Hough transform (Ballard, 1981). Ap-
proaches of this kind have the advantage that they are robust to
occlusion as well as clutter. Unfortunately, the GHT requires ex-
tremely accurate estimates for the edge directions or a complex
and expensive processing scheme, e.g., smoothing the accumula-
tor space, to determine whether an object is present and to deter-
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mine its pose. This problem is especially grave for large models.
The required accuracy is usually not obtainable, even in low noise
images, because the discretization of the image leads to edge di-
rection errors that already are too large for the GHT.
In all approaches above, the edge image is binarized. This makes
the object recognition algorithm invariant only against a narrow
range of illumination changes. If the image contrast is lowered,
progressively fewer edge points will be segmented, which has
the same effects as progressively larger occlusion. The similarity
measures proposed in this paper overcome all of the above prob-
lems and result in an object recognition strategy robust against
occlusion, clutter, and nonlinear illumination changes. They can
be extended to be robust to global as well as local contrast rever-
sals.

2 SIMILARITY MEASURES

The model of an object consists of a set of pointspi = (xi, yi)
T

and associated direction vectorsdi = (ti, ui)
T , i = 1, . . . , n.

The direction vectors can be generated by a number of different
image processing operations, e.g., edge, line, or corner extraction,
as discussed in Section 3. Typically, the model is generated from
an image of the object, where an arbitrary region of interest (ROI)
specifies that part of the image in which the object is located. It is
advantageous to specify the coordinatespi relative to the center
of gravity of the ROI of the model or to the center of gravity of
the points of the model.
The image in which the model should be found can be trans-
formed into a representation in which a direction vectorex,y =

(vx,y, wx,y)T is obtained for each image point(x, y). In the
matching process, a transformed model must be compared to the
image at a particular location. In the most general case considered
here, the transformation is an arbitrary affine transformation. It is
useful to separate the translation part of the affine transformation
from the linear part. Therefore, a linearly transformed model is
given by the pointsp′

i = Api and the accordingly transformed
direction vectorsd′

i = Adi, where

A =

(
a11 a12

a21 a22

)
.

As discussed above, the similarity measure by which the trans-
formed model is compared to the image must be robust to occlu-
sions, clutter, and illumination changes. One such measure is to
sum the (unnormalized) dot product of the direction vectors of
the transformed model and the image over all points of the model
to compute a matching score at a particular pointq = (x, y)T of
the image, i.e., the similarity measure of the transformed model
at the pointq, which corresponds to the translation part of the
affine transformation, is computed as follows:

s =
1

n

n∑
i=1

〈d′
i, eq+p′〉 (1)

=
1

n

n∑
i=1

t′ivx+x′
i
,y+y′

i
+ u′

iwx+x′
i
,y+y′

i
.

If the model is generated by edge or line filtering, and the im-
age is preprocessed in the same manner, this similarity measure
fulfills the requirements of robustness to occlusion and clutter. If
parts of the object are missing in the image, there are no lines
or edges at the corresponding positions of the model in the im-
age, i.e., the direction vectors will have a small length and hence
contribute little to the sum. Likewise, if there are clutter lines or
edges in the image, there will either be no point in the model at
the clutter position or it will have a small length, which means it
will contribute little to the sum.

The similarity measure (1) is not truly invariant against illumi-
nation changes, however, since usually the length of the direc-
tion vectors depends on the brightness of the image, e.g., if edge
detection is used to extract the direction vectors. However, if a
user specifies a threshold on the similarity measure to determine
whether the model is present in the image, a similarity measure
with a well defined range of values is desirable. The following
similarity measure achieves this goal:

s =
1

n

n∑
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Because of the normalization of the direction vectors, this sim-
ilarity measure is additionally invariant to arbitrary illumination
changes since all vectors are scaled to a length of 1. What makes
this measure robust against occlusion and clutter is the fact that
if a feature is missing, either in the model or in the image, noise
will lead to random direction vectors, which, on average, will
contribute nothing to the sum.
The similarity measure (2) will return a high score if all the di-
rection vectors of the model and the image align, i.e., point in the
same direction. If edges are used to generate the model and im-
age vectors, this means that the model and image must have the
same contrast direction for each edge. Sometimes it is desirable
to be able to detect the object even if its contrast is reversed. This
is achieved by:

s =

∣∣∣∣∣
1

n

n∑
i=1

〈d′
i, eq+p′〉

‖d′
i‖ · ‖eq+p′‖

∣∣∣∣∣ . (3)

In rare circumstances, it might be necessary to ignore even lo-
cal contrast changes. In this case, the similarity measure can be
modified as follows:

s =
1

n

n∑
i=1

|〈d′
i, eq+p′〉|

‖d′
i‖ · ‖eq+p′‖ . (4)

The above three normalized similarity measures are robust to oc-
clusion in the sense that the object will be found if it is occluded.
As mentioned above, this results from the fact that the missing
object points in the instance of the model in the image will on av-
erage contribute nothing to the sum. For any particular instance
of the model in the image, this may not be true, e.g., because the
noise in the image is not uncorrelated. This leads to the unde-
sired fact that the instance of the model will be found in different
poses in different images, even if the model does not move in
the images, because in a particular image of the model the ran-
dom direction vectors will contribute slightly different amounts to
the sum, and hence the maximum of the similarity measure will
change randomly. To make the localization of the model more
precise, it is useful to set the contribution of direction vectors
caused by noise in the image to zero. The easiest way to do this
is to set all inverse lengths1/‖eq+p′‖ of the direction vectors in
the image to 0 if their length‖eq+p′‖ is smaller than a threshold
that depends on the noise level in the image and the preprocess-
ing operation that is used to extract the direction vectors in the
image. This threshold can be specified easily by the user. By this
modification of the similarity measure, it can be ensured that an
occluded instance of the model will always be found in the same
pose if it does not move in the images.
The normalized similarity measures (2)–(4) have the property
that they return a number smaller than 1 as the score of a poten-
tial match. In all cases, a score of 1 indicates a perfect match be-
tween the model and the image. Furthermore, the score roughly
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corresponds to the portion of the model that is visible in the im-
age. For example, if the object is 50% occluded, the score (on
average) cannot exceed 0.5. This is a highly desirable property
because it gives the user the means to select an intuitive threshold
for when an object should be considered as recognized.
A desirable feature of the above similarity measures (2)–(4) is
that they do not need to be evaluated completely when object
recognition is based on a thresholdsmin for the similarity mea-
sure that a potential match must achieve. Letsj denote the partial
sum of the dot products up to thej-th element of the model. For
the match metric that uses the sum of the normalized dot prod-
ucts, this is:

sj =
1

n

j∑
i=1

〈d′
i, eq+p′〉

‖d′
i‖ · ‖eq+p′‖ . (5)

Obviously, all the remaining terms of the sum are all≤ 1. There-
fore, the partial score can never achieve the required scoresmin

if sj < smin − 1 + j/n, and hence the evaluation of the sum
can be discontinued after thej-th element whenever this condi-
tion is fulfilled. This criterion speeds up the recognition process
considerably.
Nevertheless, further speed-ups are highly desirable. Another cri-
terion is to require that all partial sums have a score better than
smin, i.e.,sj ≥ smin. When this criterion is used, the search will
be very fast, but it can no longer be ensured that the object recog-
nition finds the correct instances of the model because if missing
parts of the model are checked first, the partial score will be be-
low the required score. To speed up the recognition process with a
very low probability of not finding the object although it is visible
in the image, the following heuristic can be used: the first part of
the model points is examined with a relatively safe stopping cri-
terion, while the remaining part of the model points are examined
with the hard thresholdsmin. The user can specify what fraction
of the model points is examined with the hard threshold with a
parameterg. If g = 1, all points are examined with the hard
threshold, while forg = 0, all points are examined with the safe
stopping criterion. With this, the evaluation of the partial sums is
stopped wheneversj < min(smin−1+ fj/n, sminj/n), where
f = (1 − gsmin)/(1 − smin). Typically, the parameterg can
be set to values as high as 0.9 without missing an instance of the
model in the image.

3 OBJECT RECOGNITION

The above similarity measures are applied in an object recogni-
tion system for industrial inspection that recognizes objects under
similarity transformations, i.e., translation, rotation, and uniform
scaling, in real time. Although only similarity transformations are
implemented at the moment, extensions to general affine trans-
formations are not difficult to implement. The system consists of
two modules: an offline generation of the model and an online
recognition.
The model is generated from an image of the object to be recog-
nized. An arbitrary region of interest specifies the object’s loca-
tion in the image. Usually, the ROI is specified by the user. Alter-
natively, it can be generated by suitable segmentation techniques.
To speed up the recognition process, the model is generated in
multiple resolution levels, which are constructed by building an
image pyramid from the original image. The number of pyramid
levelslmax is chosen by the user.
Each resolution level consists of all possible rotations and scal-
ings of the model, where thresholdsφmin andφmax for the angle
andσmin andσmax for the scale are selected by the user. The
step length for the discretization of the possible angles and scales
can either be done automatically by a method similar to the one
described in (Borgefors, 1988) or be set by the user. In higher

pyramid levels, the step length for the angle is computed by dou-
bling the step length of the next lower pyramid level.
The rotated and scaled models are generated by rotating and scal-
ing the original image of the current pyramid level and perform-
ing the feature extraction in the rotated image. This is done be-
cause the feature extractors may be anisotropic, i.e., the extracted
direction vectors may depend on the orientation of the feature in
the image in a biased manner. If it is known that the feature ex-
tractor is isotropic, the rotated models may be generated by per-
forming the feature extraction only once per pyramid level and
transforming the resulting points and direction vectors.
The feature extraction can be done by a number of different im-
age processing algorithms that return a direction vector for each
image point. One such class of algorithms are edge detectors, e.g,
the Sobel or Canny (Canny, 1986) operators. Another useful class
of algorithms are line detectors (Steger, 1998). Finally, corner de-
tectors that return a direction vector, e.g., (F¨orstner, 1994), could
also be used. Because of runtime considerations the Sobel filter is
used in the current implementation of the object recognition sys-
tem. Since in industrial inspection the lighting can be controlled,
noise does not pose a significant problem in these applications.
To recognize the model, an image pyramid is constructed for the
image in which the model should be found. For each level of
the pyramid, the same filtering operation that was used to gen-
erate the model, e.g., Sobel filtering, is applied to the image.
This returns a direction vector for each image point. Note that
the image is not segmented, i.e., thresholding or other operations
are not performed. This results in true robustness to illumination
changes.
To identify potential matches, an exhaustive search is performed
for the top level of the pyramid, i.e., all precomputed models of
the top level of the model resolution hierarchy are used to com-
pute the similarity measure via (2), (3), or (4) for all possible
poses of the model. A potential match must have a score larger
than a user-specified thresholdsmin and the corresponding score
must be a local maximum with respect to neighboring scores. As
described in Section 2, the thresholdsmin is used to speed up the
search by terminating the evaluation of the similarity measure as
early as possible. With the termination criteria, this seemingly
brute-force strategy actually becomes extremely efficient. On av-
erage, about 9 pixels of the model are tested for every pose on the
top level of the pyramid.
After the potential matches have been identified, they are tracked
through the resolution hierarchy until they are found at the lowest
level of the image pyramid. Various search strategies like depth-
first, best-first, etc., have been examined. It turned out that a
breadth-first strategy is preferable for various reasons, most no-
tably because a heuristic for a best-first strategy is hard to define,
and because depth-first search results in slower execution if all
matches should be found.
Once the object has been recognized on the lowest level of the
image pyramid, its position and rotation are extracted to a reso-
lution better than the discretization of the search space, i.e., the
translation is extracted with subpixel precision and the angle and
scale with a resolution better than their respective step lengths.
This is done by fitting a second order polynomial (in the four
pose variables) to the similarity measure values in a 3×3×3×3
neighborhood around the maximum score. The coefficients of
the polynomial are obtained by convolution with 4D facet model
masks. The corresponding 2D masks are given in (Steger, 1998).
They generalize to arbitrary dimensions in a straightforward man-
ner.

4 LEAST-SQUARES POSE REFINEMENT

While the pose obtained by the extrapolation algorithm is accu-
rate enough for most applications, in some applications an even
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higher accuracy is desirable. This can be achieved through a
least-squares adjustment of the pose parameters. To achieve a
better accuracy than the extrapolation, it is necessary to extract
the model points as well as the feature points in the image with
subpixel accuracy. If this would not be done, the image and
model points would be separated radially by about 0.25 pixels
on average if each model point is matched to its closest image
point. However, even if the points are extracted with subpixel
accuracy, an algorithm that performs a least-squares adjustment
based on closest point distances would not improve the accuracy
much since the points would still have an average distance sig-
nificantly larger that 0 tangentially because the model and image
points are not necessarily sampled at the same points and dis-
tances. Because of this, the proposed algorithm finds the closest
image point for each model point and then minimizes the sum of
the squared distances of the image points to a line defined by their
corresponding model point and the corresponding tangent to the
model point, i.e., the directions of the model points are taken to be
correct and are assumed to describe the direction of the object’s
border. If, for example, an edge detector is used, the direction
vectors of the model are perpendicular to the object boundary,
and hence the equation of a line through a model point tangent to
the object boundary is given byti(x−xi)+ui(y−yi) = 0. Let
qi = (vi, wi)

T denote the matched image points corresponding
to the model pointspi. Then, the following function is minimized
to refine the posea:

d(a) =

n∑
i=1

[ti(vi(a) − xi) + ui(wi(a) − yi)]
2 → min . (6)

The potential corresponding image points in the search image are
obtained by a non-maximum suppression only and are extrapo-
lated to subpixel accuracy (Steger, 2000). By this, a segmentation
of the search image is avoided, which is important to preserve
the invariance against arbitrary illumination changes. For each
model point the corresponding image point in the search image
is chosen as the potential image point with the smallest euclidian
distance using the pose obtained by the extrapolation to transform
the model to the search image. Because the points in the search
image are not segmented, spurious image points may be brought
into correspondence with model points. Therefore, to make the
adjustment robust, only correspondences with a distance smaller
than a robustly computed standard deviation of the distances are
used for the adjustment. Since (6) results in a linear equation sys-
tem when similarity transformations are considered, one iteration
suffices to find the minimum distance. However, since the point
correspondences may change by the refined pose, an even higher
accuracy can be gained by iterating the correspondence search
and pose refinement. Typically, after three iterations the accuracy
of the pose no longer improves.

5 EXAMPLE

Figure 1 displays an example of recognizing multiple objects at
different scales and rotations. The model image is shown in Fig-
ure 1(a), while Figure 1(b) shows that all three instances of the
model have been recognized correctly despite the fact that two of
them are occluded, that one of them is printed with the contrast
reversed, and that two of the models were printed with slightly
different shapes. The time to recognize the models was 103 ms
on an 800 MHz Pentium III running under Linux.

6 PERFORMANCE EVALUATION

To assess the performance of the proposed object recognition sys-
tem, two different criteria were used: the recognition rate and the
subpixel accuracy of the results.

(a) Image of model object

(b) Found objects

Figure 1: Example of recognizing multiple objects. Note that the
model is found despite global contrast reversals and despite the
fact that two of the models were printed with slightly different
shapes.

To test the recognition rate, 500 images of an IC were taken. The
IC was occluded to various degrees with various objects, so that
in addition to occlusion, clutter of various degrees was created in
the image. Figure 2 shows six of the 500 images that were used
to test the recognition rate. The model was generated from the
print on the IC in the top left image of Figure 2. On the lowest
pyramid level it contained 2127 edge points.
An effort was made to keep the IC in exactly the same position
in the image in order to be able to measure the degree of occlu-
sion. Unfortunately, the IC moved very slightly (by less than one
pixel) during the acquisition of the images. The true amount of
occlusion was determined by extracting edges from the images
and intersecting the edge regions with the edges that constitute
the model. Since the objects that occlude the IC generate clutter
edges, this actually underestimates the occlusion.
The model was extracted in the 500 images withsmin = 0.3,
i.e., the method should find the object despite 70% occlusion.
Only the translation parameters were determined. The average
recognition time was 22 ms. The model was recognized in 478
images, i.e., the recognition rate was 95.6%. By visual inspec-
tion, it was determined that in 15 of the 22 misdetection cases the
IC was occluded by more than 70%. If these cases are removed
the recognition rate rises to 98.6%. In the remaining seven cases,
the occlusion was close to 70%. Figure 3(a) displays a plot of
the extracted scores against the estimated visibility of the object.
The instances in which the model was not found are denoted by
a score of 0, i.e., they lie on thex axis of the plot. Figure 3(b)
shows the errors of the extracted positions when extrapolating the
pose as described in Section 3. It can be seen that the IC was acci-
dentally shifted twice. The position errors are all very close to the
three cluster centers. Some of the larger errors in they coordinate
result from refraction effects caused by the transparent ruler that
was used in some images to occlude the IC (see the top right im-
age of Figure 2). Figures 3(c) and (d) display the position errors
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Figure 2: Six of the 500 images that were used to test the recognition rate. The model was generated from the print on the IC in the top
left image. With the proposed approach, the model was found in all images except the lower right image.

after one and three iterations of the least-squares adjustment de-
scribed in Section 4. Evidently, the extracted positions lie much
closer to the three cluster centers. Furthermore, it can be seen that
the least-squares adjustment does not introduce matching errors,
i.e., outliers, and hence is very robust.

To check whether the proposed approach results in an improve-
ment over existing approaches, the original implementation by
Rucklidge (Rucklidge, 1997) of an approach that uses the par-
tial Hausdorff distance as a similarity measure was used for the
same test. The parameter for the maximum object to image and
image to object distance were set to 1. Initial tests with the for-
ward and reverse fractions set to 0.3 resulted in run times of more
than three hours per image. Therefore, the forward and reverse
fractions were set to 0.5. This resulted in an average matching
time of 2.27 s per image, i.e., more that 100 times as long as the
proposed approach. Since the method of (Rucklidge, 1997) re-
turns all matches that fulfill its score and distance criteria, the
best match was selected based on the minimum forward distance.
If more than one match had the same minimum forward distance,
the match with the maximum forward fraction was selected as the
best match. A match was considered correct if its distance to the
reference point of the model was less than one pixel. With this,
the IC was recognized in 361 images for a rate of 72.2%. Ifsmin

was set to 0.5 in the proposed approach, the recognition rate was
83.8%, i.e., the proposed approach performed 11.6% better than
a method using the Hausdorff distance. Figure 3(e) shows a plot
of the forward fraction of the best match returned by the partial
Hausdorff distance versus the visibility of the model in the im-
age. The wrong matches either have a forward fraction of 0 or
close to 0.5. Figure 3(f) displays the position errors of the best
matches. Note that in some instances the best match was more
than 200 pixels from the true location.

To test the subpixel accuracy of the proposed approach, the IC
was mounted onto an table that can be shifted with an accuracy
of 1µm and can be rotated with an accuracy 0.7’ (0.011667◦).
In the first set of experiments, the IC was shifted in 10µm in-
crements, which resulted in shifts of about 1/7 pixel in the im-
age. A total of 50 shifts were performed, while 10 images were
taken for each position of the object. The IC was not occluded

in this experiment. The pose of the object was extracted using
the extrapolation of Section 3 and the least-squares adjustment
of Section 4 using one and three iterations. To assess the accu-
racy of the extracted results, a straight line was fitted to the ex-
tracted model positions. The residual errors of the line fit, shown
in Figure 4(a), are an extremely good indication of the achiev-
able accuracy. The errors using the extrapolation are never larger
than 1/22 pixel. What may seem surprising at first glance is that
the position actually gets worse when using the least-squares ad-
justment. What can also be noted is that the errors show a si-
nusoidal pattern that corresponds exactly to the pixel size. This
happens because the IC is moved exactly vertically and because
the fill factor of the camera (the ratio of the light-sensitive area
of each sensor element to the total pixel area of each sensor el-
ement) is much less than 100%. Because of this, the subpixel
edge positions do not cause any gray value changes whenever the
edge falls on the light-insensitive area of the sensor, and hence
the subpixel edge positions are not as accurate as they could be
when using a camera with a high fill factor. Unfortunately, in this
example, the object’s edge positions are such that their location
is highly correlated with the blind spots. Hence, this effect is not
unexpected. When cameras with high fill factors are used the ac-
curacy when using the least-squares adjustment is significantly
better than when using the extrapolation.

To test the accuracy of the extracted angles, the IC was rotated
50 times for a total of 5.83◦. Again, 10 images were taken in
every orientation. The residual errors from a straight line fit, dis-
played in Figure 4(b), show that the angle accuracy is better than
1/12◦ (5’) for the extrapolation method, better than 1/40◦ (1.3’)
for the least-squares adjustment using one iteration, and better
than 1/100◦ (0.6’) for the least-squares adjustment using three it-
erations (ignoring the systematic error for very small angles, for
which all three methods return the same result; this is probably an
error in the adjustment of the turntable that was made when the
images were acquired). Since in this case the IC is rotated, the
errors in the subpixel positions of the edges caused by the low
fill factor average out in the least-squares adjustment, and hence
a significantly better accuracy for the angles is obtained using the
least-squares adjustment.
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0

0.2

0.4

0.6

0.8

1

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S
co

re

Visibility

(e) Score vs. visibility

-100

-50

0

50

100

150

200

-100 -80 -60 -40 -20 0 20 40 60 80 100 120

(f) Position errors

Figure 3: Extracted scores plotted against the visibility of the ob-
ject (a) and position errors of the extracted matches for the pro-
posed approach using extrapolation (b) and least-squares adjust-
ment with one (c) and three (d) iterations; scores vs. visibility (e)
and position errors (f) using the Hausdorff distance.

A more thorough evaluation of the proposed method, including
a comparison to a larger number of algorithms can be found in
(Ulrich and Steger, 2001).

7 CONCLUSIONS

A novel object recognition approach for industrial inspection us-
ing a new class of similarity measures that are inherently robust
against occlusion, clutter, nonlinear illumination changes, and
global as well as local contrast reversals, has been proposed. The
system is able to recognize objects under similarity transforma-
tions in video frame rate. A performance evaluation shows that
extremely high object recognition rates (more than 98% in the
test data set) are achievable. The evaluation also shows that ac-
curacies of 1/22 pixel and 1/100 degree can be achieved on real
images.
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