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ABSTRACT

An object recognition system for industrial inspection that recognizes objects under similarity transformations in real time is proposed.

It uses novel similarity measures that are inherently robust against occlusion, clutter, and nonlinear illumination changes. They can be
extended to be robust to global as well as local contrast reversals. The matching is performed based on the maxima of the similarity
measure in the transformation space. For normal applications, subpixel-accurate poses are obtained by extrapolating the maxima of
the similarity measure from discrete samples in the transformation space. For applications with very high accuracy requirements,
least-squares adjustment is used to further refine the extracted pose.

1 INTRODUCTION a moderate amount of occlusion and clutter by computing the

. L . . .. similarity measure in a statistically robust manner (Lai and Fang,
Object recognition is used in many computer vision app|lcat|0ns.1999).

It is particularly useful for industrial inspection tasks, where of- more complex class of obiect recoanition methods does not use
ten an image of an object must be aligned with a model of th he gra vallﬁ)es of the modél or ob'egt itself, but uses the object’s
object. The transformation (pose) obtained by the object recog-d 9 fy tching (B f 19é8 R kl"d 1997). | |J| )
nition process can be used for various tasks, e.g., pick and placee ges for matc ing (Borgefors, » RUcKIldge, ): nafex

Isting approaches, the edges are segmented, i.e., a binary image

operations or quality control. In most cases, the model of the ob: computed for both the model and the search image. Usuall
ject is generated from an image of the object. This 2D approac pute: . . . Image. uaty,
the edge pixels are defined as the pixels in the image where the

is taken because it usually is too costly or time consuming to Crefna nitude of the aradient is maximum in the direction of the ara-
ate a more complicated model, e.g., a 3D CAD model. Therel‘oredi gt Vari irgil ity m r n then b dt n? ;
in industrial inspection tasks one is usually interested in matchihg nlwo daél c:gsthse imaag?é '?r?:usienfilzca?ity n?easﬁrgsii (E?o(r:goef(?rz €
ing a 2D model of an object to the image. The object may be}1988) computes the average distance of the model edges and the

transformed by a certain class of transformations, depending o a0e edaes. The disadvantage of this similarity measure is that
the particular setup, e.g., translations, euclidean transformations,. 9 ges. 9 ty

similarity transformations, or general 2D affine transformations'® ' "ot robust to_oc;!usmns_ because the distance to the nearest
(which are usually taken as an approximation to the true perspec?—qge Increases significantly if some of the edges of the model are
tive transformations an object may undergo). missing in the |m§ge. o ) .

A large number of object recognition strategies exist. The apJn€ Hausdorff distance similarity measure used in (Rucklidge,
proach to object recognition proposed in this paper uses pixels a8?97) tries to remedy this shortcoming by calculating the maxi-
its geometric features, i.e., not higher level features like lines ofum of thek-th largest distance of the model edges to the image

elliptic arcs. Therefore, only similar pixel-based strategies wil€dges and thé-th largest distance of the image edges and the
be reviewed. model edges. If the model containgoints and the image con-

Several methods have been proposed to recognize objects in ir{é'“s"% edge points, the similarity measure is robust_ (oA, 0%

ages by matching 2D models to images. A survey of matchin cclusion and lwm.% cIut_ter.‘Unfortunater, an estimate far
approaches is given in (Brown, 1992). In most 2D matchings needed to determiriewhich is usually not available.

approaches the model is systematically compared to the imagll of these similarity measures have the disadvantage that they
using all allowable degrees of freedom of the chosen class dio not take into account the direction of the edges. In (Olson and
transformations. The comparison is based on a suitable similafHuttenlocher, 1997) it is shown that disregarding the edge direc-
ity measure (also called match metric). The maxima or minimdion information leads to false positive instances of the model in
of the similarity measure are used to decide whether an object i€ image. The similarity measure proposed in (Olson and Hut-
present in the image and to determine its pose. To speed up tii@nlocher, 1997) tries to improve this by modifying the Hausdorff
recognition process, the search is usually done in a coarse-to-figistance to also measure the angle difference between the model
manner, e.g., by using image pyramids (Tanimoto, 1981). and image edges. Unfortunately, the implementation is based on
The simplest class of object recognition methods is based on tHaultiple d_istance transfo_rmatio_ns, whi_ch_makes _the algorithm too
gray values of the model and image itself and uses normalizegPmputationally expensive for industrial inspection.

cross correlation or the sum of squared or absolute differences &snally, another class of edge based object recognition algorithms
a similarity measure (Brown, 1992). Normalized cross correladis based on the generalized Hough transform (Ballard, 1981). Ap-
tion is invariant to linear brightness changes but is very sensitivgroaches of this kind have the advantage that they are robust to
to clutter and occlusion as well as nonlinear contrast changescclusion as well as clutter. Unfortunately, the GHT requires ex-
The sum of gray value differences is not robust to any of theséremely accurate estimates for the edge directions or a complex
changes, but can be made robust to linear brightness changes &gd expensive processing scheme, e.g., smoothing the accumula-
explicitly incorporating them into the similarity measure, and totor space, to determine whether an object is present and to deter-



mine its pose. This problem is especially grave for large modelsThe similarity measure (1) is not truly invariant against illumi-
The required accuracy is usually not obtainable, even in low noiseation changes, however, since usually the length of the direc-
images, because the discretization of the image leads to edge dien vectors depends on the brightness of the image, e.g., if edge
rection errors that already are too large for the GHT. detection is used to extract the direction vectors. However, if a
In all approaches above, the edge image is binarized. This makesser specifies a threshold on the similarity measure to determine
the object recognition algorithm invariant only against a narromwhether the model is present in the image, a similarity measure
range of illumination changes. If the image contrast is loweredwith a well defined range of values is desirable. The following
progressively fewer edge points will be segmented, which hasimilarity measure achieves this goal:
the same effects as progressively larger occlusion. The similarity n ,
measures proposed in this paper overcome all of the above prob-, _ 1 Z (di, eq4p') o)

n

=1

lems and result in an object recognition strategy robust against i1 - leqp |l
occlusion, clutter, and nonlinear illumination changes. They can , ,
be extended to be robust to global as well as local contrast rever- 1 Z tiVetal yty! T Uilata! yty!
sals. T oon 2. 2. |2 2
i=1 \/ti T \/vz+z’i,y+y; + Watal y+y)
2 SIMILARITY MEASURES Because of the normalization of the direction vectors, this sim-

ilarity measure is additionally invariant to arbitrary illumination

. e T . changes since all vectors are scaled to a length of 1. What makes
and associated direction vectafs = (fi,ui) , i = 1,....n.  yusmeaqire robust against occlusion and clutter is the fact that
_The direction v_ectors can be generated b_y a number of dlffer(_er]} a feature is missing, either in the model or in the image, noise
image processing operations, e.g., edge, line, or corner extraction

; ; ) - ) will lead to random direction vectors, which, on average, will
as discussed in Section 3. Typically, the model is generated froreontribute nothing to the sum 9

an ‘”?"’.‘ge of the object, where an arbi_trary regi(_)n Of. interest (Ro.l)l'he similarity measure (2) will return a high score if all the di-
specifies that part of th_e Image in W.h'Ch the ol_aject is located. It 'Section vectors of the model and the image align, i.e., point in the
advantz_igeous to specify the coordingeselative to the center same direction. If edges are used to generate the model and im-
of gra\_nty of the ROI of the model or to the center of gravity of age vectors, this means that the model and image must have the
the points of the model. same contrast direction for each edge. Sometimes it is desirable

The Image in which the r_nod_el Sh.OU|d b_e fOL.md can be ransi, he able to detect the object even if its contrast is reversed. This
formed into a representation in which a direction veetpy, = is achieved by:

(ve.y,way)" is obtained for each image poifit,y). In the
matching process, a transformed model must be compared to the 1 — (d} eqip)

image at a particular location. In the most general case considered s=1 Z T2 Tearml| 3)
here, the transformation is an arbitrary affine transformation. Itis i=1 " atp

useful to separate the translation part of the affine transformatiof, yare circumstances, it might be necessary to ignore even lo-

from the linear part. Therefore, a linearly transformed model iscq| contrast changes. In this case, the similarity measure can be
given by the pointg; = Ap; and the accordingly transformed qdified as follows:

direction vectorsl; = Ad;, where " )|
1 di7 €q+p/
A= < ) | *= 2 L Tl Tears] @

) o i The above three normalized similarity measures are robust to oc-
As discussed above, the similarity measure by which the transs|ysjon in the sense that the object will be found if it is occluded.
formed model is compared to the image must be robust to occluas mentioned above, this results from the fact that the missing
sions, clutter, and |I_Ium|nat|on changes. One _such measure is {§pject points in the instance of the model in the image will on av-
sum the (unnormalized) dot product of the direction vectors Ofgrage contribute nothing to the sum. For any particular instance
the transformed model and the image over all points of the modeyt the model in the image, this may not be true, e.g., because the
to compute a matching score at a particular pgirt (z,y)" of  noise in the image is not uncorrelated. This leads to the unde-
the image, i.e., the similarity measure of the transformed modeljre fact that the instance of the model will be found in different
at the pointg, which corresponds to the translation part of the poses in different images, even if the model does not move in

The model of an object consists of a set of pojmts= (x;, yi)T

affine transformation, is computed as follows: the images, because in a particular image of the model the ran-
n dom direction vectors will contribute slightly different amounts to
s = 1 Z(% Cqip) (1) thesum, and hence the maximum of the similarity measure will
ne— change randomly. To make the localization of the model more

precise, it is useful to set the contribution of direction vectors
caused by noise in the image to zero. The easiest way to do this
is to set all inverse lengths/||e, .,/ || of the direction vectors in

the image to O if their lengthe,, || is smaller than a threshold

If the model is generated by edge or line filtering, and the im-that depends on the noise level in the image and the preprocess-
age is preprocessed in the same manner, this similarity measuirey operation that is used to extract the direction vectors in the
fulfills the requirements of robustness to occlusion and clutter. limage. This threshold can be specified easily by the user. By this
parts of the object are missing in the image, there are no linemodification of the similarity measure, it can be ensured that an
or edges at the corresponding positions of the model in the imeccluded instance of the model will always be found in the same
age, i.e., the direction vectors will have a small length and henceose if it does not move in the images.

contribute little to the sum. Likewise, if there are clutter lines or The normalized similarity measures (2)—(4) have the property
edges in the image, there will either be no point in the model athat they return a number smaller than 1 as the score of a poten-
the clutter position or it will have a small length, which means ittial match. In all cases, a score of 1 indicates a perfect match be-
will contribute little to the sum. tween the model and the image. Furthermore, the score roughly

n
1 t/ ’
= o Vata! yty, T Uillota! yiy, -

=1



corresponds to the portion of the model that is visible in the im-pyramid levels, the step length for the angle is computed by dou-
age. For example, if the object is 50% occluded, the score (obling the step length of the next lower pyramid level.

average) cannot exceed 0.5. This is a highly desirable propertyhe rotated and scaled models are generated by rotating and scal-
because it gives the user the means to select an intuitive threshalay the original image of the current pyramid level and perform-
for when an object should be considered as recognized. ing the feature extraction in the rotated image. This is done be-
A desirable feature of the above similarity measures (2)—(4) igause the feature extractors may be anisotropic, i.e., the extracted
that they do not need to be evaluated completely when objedlirection vectors may depend on the orientation of the feature in
recognition is based on a threshaid;,, for the similarity mea- the image in a biased manner. If it is known that the feature ex-
sure that a potential match must achieve. 4,adenote the partial ~ tractor is isotropic, the rotated models may be generated by per-
sum of the dot products up to thieth element of the model. For forming the feature extraction only once per pyramid level and
the match metric that uses the sum of the normalized dot prodransforming the resulting points and direction vectors.

ucts, thisis: The feature extraction can be done by a number of different im-
1 j (e age processing algorithms that return a direction vector for each

s = — Z /“7‘”” . 5) image point. One such class of algorithms are edge detectors, e.g,

ne i1l - lleqpl the Sobel or Canny (Canny, 1986) operators. Another useful class

of algorithms are line detectors (Steger, 1998). Finally, corner de-
tectors that return a direction vector, e.g.Q(ther, 1994), could
also be used. Because of runtime considerations the Sobel filter is

if s; < smin — 1+ j/n, and hence the evaluation of the sum . - A . o
can be discontinued after theth element whenever this condi- used n the_cu_rrent |n_1pl_ementa_t|on of t_he quect recognition sys-
tem. Since in industrial inspection the lighting can be controlled,

tion is fulfilled. This criterion speeds up the recognition process - o . L
considerably. noise does not pose a significant problem in these applications.

Nevertheless, further speed-ups are highly desirable. Another cr}l:0 recognize the model, an image pyramid is constructed for the

A : : image in which the model should be found. For each level of
terion is to require that all partial sums have a score better thaﬂ1e ramid. the same filtering operation that was used to gen-
Smin, I.€.,5;5 > Smin. When this criterion is used, the search will Py ’ g op 9

' - erate the model, e.g., Sobel filtering, is applied to the image.
be very fast, but it can no longer be ensured that the object r€CO%his returns a directgi]on vector for ea?ch imgge point. Note tr?at

nition finds the correct instances of the model because if missingne image is not seamented. i.e.. thresholding or other operations
parts of the model are checked first, the partial score will be be- 9 9 T g P

. . .—are not performed. This results in true robustness to illumination
low the required score. To speed up the recognition process wnhghan es

very low probability of not finding the object althoughiitis visible ;0 idgntify otential matches, an exhaustive search is performed
in the image, the following heuristic can be used: the first part of P . P

the model points is examined with a relatively safe stopping cri-for the top level of the pyramid, i.e., all precomputed models of

terion, while the remaining part of the model points are examineéhe top level of the model resolution hierarchy are used to com-

with the hard thresholdnin. The user can specify what fraction pute the similarity measure v_ia (2), (3), or (4) for all possible
of the model points is examined with the hard threshold with poses of the model. A potential match must have a score larger

parameterg. If ¢ = 1, all points are examined with the hard athan a user-specmeq thresh_csigiin and the co_rrespo_ndmg score

- - . - must be a local maximum with respect to neighboring scores. As
threshold, while fory = 0, all points are examined with the safe described in Section 2, the thresheld.. is used to speed up the
stopping criterion. With this, the evaluation of the partial sums issearch by terminatin ’the evaluationlgf the similariFt) meaF;ure as
stopped whenevet; < min(Smin — 1+ fJj/n, Sminj/n), Where Y g y

F = (L— gsmm)/(1 — smim). Typically, the parametey can Earlty_?s post5|btle. WIT tr|1|e E)ermlnatlon tcrlterlft, trf1f|_s_seten(1)|ngly_
be set to values as high as 0.9 without missing an instance of g ute-force strategy actually becomes extremely efficient. on av
. ) erage, about 9 pixels of the model are tested for every pose on the
model in the image. .
top level of the pyramid.
After the potential matches have been identified, they are tracked
3 OBJECT RECOGNITION through the resolution hierarchy until they are found at the lowest
o o ] level of the image pyramid. Various search strategies like depth-
The above similarity measures are applied in an object recognijrst, pest-first, etc., have been examined. It turned out that a
tion system for industrial inspection that recognizes objects undegreadth-first strategy is preferable for various reasons, most no-
similarity transformations, i.e., translation, rotation, and uniformap|y pecause a heuristic for a best-first strategy is hard to define,
scaling, inreal time. Although only similarity transformations are ang pecause depth-first search results in slower execution if all
implemented at the moment, extensions to general affine transpaiches should be found.
formations are not dif_ficult to imp_lement. The system consists_ ofonce the object has been recognized on the lowest level of the
two modules: an offline generation of the model and an onlingmage pyramid, its position and rotation are extracted to a reso-
recognition. lution better than the discretization of the search space, i.e., the
The model is generated from an image of the object to be recogranslation is extracted with subpixel precision and the angle and
nized. An arbitrary region of interest specifies the object’s locascale with a resolution better than their respective step lengths.
tion in the image. Usually, the ROl is specified by the user. Alter-This is done by fitting a second order polynomial (in the four
natively, it can be generated by suitable segmentation techniquegese variables) to the similarity measure values in@33< 3 x 3
To speed up the recognition process, the model is generated figighborhood around the maximum score. The coefficients of
multiple resolution levels, which are constructed by building anthe polynomial are obtained by convolution with 4D facet model
image pyramid from the original image. The number of pyramidmasks. The corresponding 2D masks are given in (Steger, 1998).
levelsimax is chosen by the user. They generalize to arbitrary dimensions in a straightforward man-
Each resolution level consists of all possible rotations and scalrer.
ings of the model, where thresholds,in and¢max for the angle
and omin andomax for the scale are selected by the user. The 4 LEAST-SQUARES POSE REFINEMENT
step length for the discretization of the possible angles and scales
can either be done automatically by a method similar to the on&Vhile the pose obtained by the extrapolation algorithm is accu-
described in (Borgefors, 1988) or be set by the user. In higherate enough for most applications, in some applications an even

Obviously, all the remaining terms of the sum are<all.. There-
fore, the partial score can never achieve the required scQre



higher accuracy is desirable. This can be achieved through a
least-squares adjustment of the pose parameters. To achieve a
better accuracy than the extrapolation, it is necessary to extract
the model points as well as the feature points in the image with
subpixel accuracy. |If this would not be done, the image and
model points would be separated radially by about 0.25 pixels
on average if each model point is matched to its closest image
point. However, even if the points are extracted with subpixel
accuracy, an algorithm that performs a least-squares adjustment
based on closest point distances would not improve the accuracy
much since the points would still have an average distance sig-
nificantly larger that O tangentially because the model and image
points are not necessarily sampled at the same points and dis-
tances. Because of this, the proposed algorithm finds the closest
image point for each model point and then minimizes the sum of
the squared distances of the image points to a line defined by their
corresponding model point and the corresponding tangent to the
model point, i.e., the directions of the model points are taken to be
correct and are assumed to describe the direction of the object’s
border. If, for example, an edge detector is used, the direction
vectors of the model are perpendicular to the object boundary,
and hence the equation of a line through a model point tangent to
the object boundary is given By(z — x;) + u;(y —y:) = 0. Let

¢ = (vi,w;)T denote the matched image points corresponding
to the model pointg;. Then, the following function is minimized

to refine the pose:

(b) Found objects

d(a) = Z[ti(vi(a) — ;) +ui(wi(a) —y;)]> — min . (6)  Figure 1: Example of recognizing multiple objects. Note that the
i=1 model is found despite global contrast reversals and despite the

. I _ . fact that two of the models were printed with slightly different
The potential corresponding image points in the search image ars%apes

obtained by a non-maximum suppression only and are extrapo-
lated to subpixel accuracy (Steger, 2000). By this, a segmentation
of the search image is avoided, which is important to preservdO test the recognition rate, 500 images of an IC were taken. The
the invariance against arbitrary illumination changes. For eachC was occluded to various degrees with various objects, so that
model point the corresponding image point in the search imag# addition to occlusion, clutter of various degrees was created in
is chosen as the potential image point with the smallest euclidiathe image. Figure 2 shows six of the 500 images that were used
distance using the pose obtained by the extrapolation to transforf® test the recognition rate. The model was generated from the
the model to the search image. Because the points in the searfnt on the IC in the top left image of Figure 2. On the lowest
image are not segmented, spurious image points may be brougbyramid level it contained 2127 edge points.

into correspondence with model points. Therefore, to make thén effort was made to keep the IC in exactly the same position
adjustment robust, only correspondences with a distance smallét the image in order to be able to measure the degree of occlu-
than a robustly computed standard deviation of the distances afon. Unfortunately, the IC moved very slightly (by less than one
used for the adjustment. Since (6) results in a linear equation syixel) during the acquisition of the images. The true amount of
tem when similarity transformations are considered, one iteratio@cclusion was determined by extracting edges from the images
suffices to find the minimum distance. However, since the poin@ind intersecting the edge regions with the edges that constitute
correspondences may change by the refined pose, an even higﬁ]b@ model. Since the objects that occlude the IC generate clutter
accuracy can be gained by iterating the correspondence searefges, this actually underestimates the occlusion.

and pose refinement. Typically, after three iterations the accuracyhe model was extracted in the 500 images with, = 0.3,

of the pose no longer improves. i.e., the method should find the object despite 70% occlusion.
Only the translation parameters were determined. The average
recognition time was 22 ms. The model was recognized in 478
images, i.e., the recognition rate was 95.6%. By visual inspec-
Figure 1 displays an example of recognizing multiple objects ation, it was determined that in 15 of the 22 misdetection cases the
different scales and rotations. The model image is shown in FigiC was occluded by more than 70%. If these cases are removed
ure 1(a), while Figure 1(b) shows that all three instances of thé¢he recognition rate rises to 98.6%. In the remaining seven cases,
model have been recognized correctly despite the fact that two dhe occlusion was close to 70%. Figure 3(a) displays a plot of
them are occluded, that one of them is printed with the contrasthe extracted scores against the estimated visibility of the object.
reversed, and that two of the models were printed with slightlyThe instances in which the model was not found are denoted by
different shapes. The time to recognize the models was 103 n& score of 0, i.e., they lie on the axis of the plot. Figure 3(b)

5 EXAMPLE

on an 800 MHz Pentium Il running under Linux. shows the errors of the extracted positions when extrapolating the
pose as described in Section 3. It can be seen that the IC was acci-
6 PERFORMANCE EVALUATION dentally shifted twice. The position errors are all very close to the

three cluster centers. Some of the larger errors iy t@ordinate
To assess the performance of the proposed object recognition sysult from refraction effects caused by the transparent ruler that
tem, two different criteria were used: the recognition rate and thevas used in some images to occlude the IC (see the top right im-
subpixel accuracy of the results. age of Figure 2). Figures 3(c) and (d) display the position errors
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Figure 2: Six of the 500 images that were used to test the recognition rate. The model was generated from the print on the IC in the top
leftimage. With the proposed approach, the model was found in all images except the lower right image.

after one and three iterations of the least-squares adjustment die-this experiment. The pose of the object was extracted using
scribed in Section 4. Evidently, the extracted positions lie muctthe extrapolation of Section 3 and the least-squares adjustment
closer to the three cluster centers. Furthermore, it can be seen ttat Section 4 using one and three iterations. To assess the accu-
the least-squares adjustment does not introduce matching erroracy of the extracted results, a straight line was fitted to the ex-
i.e., outliers, and hence is very robust. tracted model positions. The residual errors of the line fit, shown

To check whether the proposed approach results in an improvd? Figure 4(a), are an extremely good indication of the achiev-
ment over existing approaches, the original implementation byRPI€ accuracy. The errors using the extrapolation are never larger
Rucklidge (Rucklidge, 1997) of an approach that uses the parLhan 1/2__2 pixel. What may seem surprising at first glance is that
tial Hausdorff distance as a similarity measure was used for thi€ Position actually gets worse when using the least-squares ad-
same test. The parameter for the maximum object to image aniStment. What can also be noted is that the errors show a si-
image to object distance were set to 1. Initial tests with the fornusoidal pattern that corresponds exactly to the pixel size. This
ward and reverse fractions set to 0.3 resulted in run times of morBappens because the IC is moved exactly vertically and because
than three hours per image. Therefore, the forward and reverdBe fill factor of the camera (the ratio of the light-sensitive area
fractions were set to 0.5. This resulted in an average matchingf €ach sensor element to the total pixel area of each sensor el-
time of 2.27 s per image, i.e., more that 100 times as long as thgMent) is much less than 100%. Because of this, the subpixel
proposed approach. Since the method of (Rucklidge, 1997) re2dge positions do not cause any gray value changes whenever the
turns all matches that fulfill its score and distance criteria, the2dge falls on the light-insensitive area of the sensor, and hence
best match was selected based on the minimum forward distancéie subpixel edge positions are not as accurate as they could be
If more than one match had the same minimum forward distanceVhen using a camera with a h|g|_1 _f||| factor. Unfortunatel_y, in thl_s
the match with the maximum forward fraction was selected as th€x@mple, the object's edge positions are such that their location
best match. A match was considered correct if its distance to thi highly correlated with the blind spots. Hence, this effect is not
reference point of the model was less than one pixel. With thisunexpected. When cameras with high fill factors are used the ac-
the IC was recognized in 361 images for a rate of 72.2%,lf, curacy when using .the Ieast-square§ adjustment is significantly
was set to 0.5 in the proposed approach, the recognition rate w&§tter than when using the extrapolation.

83.8%, i.e., the proposed approach performed 11.6% better thag, test the accuracy of the extracted angles, the IC was rotated
a method using the_Hausdorff distance. Figure 3(e) shows a P'% times for a total of 5.83 Again, 10 images were taken in

of the forward fraction of the best match returned by the partiakyery orientation. The residual errors from a straight line fit, dis-
Hausdorff distance versus t_he visibility of the model in the im- played in Figure 4(b), show that the angle accuracy is better than
age. The wrong matches _elther have a f_o_rward fraction of 0 ok ;1 » (5") for the extrapolation method, better than 174@.3")

close to 0.5. Figure 3(f) displays the position errors of the besfoy the |east-squares adjustment using one iteration, and better
matches. Note that in some instances the best match was mofigan 1/100 (0.6") for the least-squares adjustment using three it-
than 200 pixels from the true location. erations (ignoring the systematic error for very small angles, for
To test the subpixel accuracy of the proposed approach, the I@hich all three methods return the same result; this is probably an
was mounted onto an table that can be shifted with an accuraagrror in the adjustment of the turntable that was made when the
of 1m and can be rotated with an accuracy 0.7’ (0.012667 images were acquired). Since in this case the IC is rotated, the
In the first set of experiments, the IC was shifted inubd in- errors in the subpixel positions of the edges caused by the low
crements, which resulted in shifts of about 1/7 pixel in the im-fill factor average out in the least-squares adjustment, and hence
age. A total of 50 shifts were performed, while 10 images werea significantly better accuracy for the angles is obtained using the
taken for each position of the object. The IC was not occludedeast-squares adjustment.
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