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ABSTRACT

An approach for automatic road extraction from digital aerial imagery is presented. The extraction is based on
a semantic model for roads. The images are divided into different so-called “global contexts”: rural, forest, and
urban. Different parts of the road model and different strategies are used in the different global contexts. In rural
areas, a multi-scale approach is employed to find initial hypotheses for roadsides, which are then grouped into
road segments using local context knowledge. In urban areas, road markings and DEM information are used
to extract road segments. In addition to the local grouping, road segments are selected and linked into a global
road network. An external evaluation shows the high quality of the results that are obtainable automatically
with the proposed approach.

1 INTRODUCTION

In the past, the automation of road extraction from
digital imagery has received considerable attention.
Research on this issue is often motivated by the in-
creasing importance of geographic information sys-
tems (GIS) and the need for data acquisition and up-
date for GIS. However, the influence of this work on
automatic road extraction within an operational envi-
ronment is still quite small. One of the reasons for
this might be that fully automatic approaches in many
cases do not yield satisfactory results, i.e., the au-
tomatically derived results need too much post edit-
ing. In contrast, in semi-automatic approaches the
optimization of the interaction between operator and
computer is the crucial task.

Background objects, like buildings, cars, or trees, of-
ten have a strong influence on the appearance of
roads. This also has considerable influence on the
image features, which are useful for road extraction,
and on the extraction strategy. Therefore, it is im-
portant to model not only the properties of the roads
but also the relations between roads and these back-
ground objects. An investigation on the influence
of neighboring objects on road extraction has been
made in (Bordes et al., 1997).

In this paper, we propose a fully automatic approach
for road extraction, which models roads as well as
their context. We distinguish in this work three so-
called “global contexts”: rural, forest, and urban area,
cf. (Baumgartner et al., 1997). The road extraction
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is based on the “hypothesize and test” paradigm: Af-
ter the detection of initial hypotheses for road seg-
ments, hypotheses for connections are generated
and checked. We also make use of the scale-space
behavior of roads and combine line extraction and
edge extraction. This fusion step is primarily based
on local verification of the image content. A global
grouping step is then applied to get a topologically
sound hypothesis for the road network. In urban ar-
eas the road extraction is based on markings. Mark-
ings are grouped into lanes and road segments, and
knowledge about relations between lanes and vehi-
cles is used to verify the hypotheses for lanes and
roads.

The most relevant previous work is discussed in Sec-
tion 2. The road model in Section 3 describes the
most important parts of the model. Section 4 focuses
on road extraction in rural areas. In Section 5 an
approach for road extraction in urban areas is pre-
sented. A short outlook concludes this paper.

2 PREVIOUS WORK

The existing approaches cover a wide variety of
strategies to extract roads automatically from digital
aerial or satellite imagery, or at least to automate
parts of the manual extraction process. As GIS-
driven approaches for road extraction are more use-
ful for verification than for extraction of new roads,
we focus in the discussion of previous approaches
on those that also aim at extraction of previously un-
known roads.

In semi-automatic approaches an operator provides,
e.g., starting points and starting directions on the
road for a road following algorithm (McKeown Jr. and
Denlinger, 1988, Vosselman and de Knecht, 1995).
If an operator measures more than one point on the
road an algorithm like F∗ can be applied to find an op-
timal path, i.e., the road between these points, (Fis-
chler et al., 1981, Merlet and Zerubia, 1996). If more
than one image is used, this can also be done in
3D (Grün and Li, 1997). The advantage of the ap-
proaches with multiple points is that the path of the
road is more constrained, which results in a more re-
liable handling of critical areas. A similar approach
based on so-called “zip-lock” snakes is presented in
(Neuenschwander et al., 1995). By automatic detec-
tion of the seed points, semi-automatic schemes can
be extended to fully-automatic ones. An automatic
approach is described in (Barzohar et al., 1997). The
selection of starting points is based on gray-value his-
tograms. Further assumptions about geometry and
radiometry are described in a Markov random field.
Road extraction is then performed by dynamic pro-
gramming. Another fully-automatic approach for the
extraction of road networks from digital aerial im-
agery has also been proposed by (Ruskoné, 1996):

Hypotheses for connections between automatically
detected seed points are checked using geometri-
cal constraints. A more comprehensive survey on
models and strategies for road extraction is given in
(Mayer, 1998).

In the following paragraphs we discuss the most rele-
vant previous work on fully-automatic road extraction.
The approaches can be classified according to the
resolution of the input images. In the first category,
low resolution (> 1 m per pixel) aerial or satellite im-
ages are used. In the second category, high resolu-
tion (20–50 cm per pixel) aerial images are used.

In (Fischler et al., 1981) roads are extracted from low
resolution aerial images, each connecting two given
points of the road network. Different low level opera-
tors for road extraction from low resolution aerial im-
ages are classified into two types: Type I operators
are assumed to deliver no false extractions, but some
roads might not be found. Type II operators may yield
false extractions but are assumed to extract all roads
completely. In regions where a type I operator has
detected a road, the scores of every type II operator
is set to a maximum value (zero costs). By this, mul-
tiple type II operators are made commensurate. The
result of each type II operator is stored in a cost array.
Between two given points the best path is calculated
for each type II operator using the F∗ algorithm. The
path which yields the lowest so-called “self normal-
ized average cost” per pixel is chosen as the road.
In (Merlet and Zerubia, 1996), the F∗ algorithm is ex-
tended to cliques and to neighborhoods larger than
one. By means of the cliques, it is possible to intro-
duce contrast information into the calculation of the
minimum cost path. The larger neighborhoods allow
for the consideration of the curvature of the final path.

An approach that mainly deals with the network char-
acter of roads is described in (Vasudevan et al.,
1988). After line extraction from Landsat TM imagery
neighboring and collinear lines are searched for. For
each line the best neighbor is determined based on
the difference in direction and the minimum distance
between the end points. Connected lines form so-
called “line clusters”, which represent parts of the
road network. Only local grouping criteria are used,
and a line can be part of multiple clusters.

The approach of (Zlotnick and Carnine, 1993) and
(McKeown Jr. and Denlinger, 1988) is a two-step
approach to extract roads from high resolution im-
ages. First, road seeds are generated by grouping
anti-parallel pairs of edges. The resulting set of in-
complete road axes is completed by a pixel-based
grouping procedure, and road seeds are finally se-
lected based on length and straightness. These road
seeds are input into a road tracking algorithm, which
consists of two independent trackers. In the edge
tracker, edge points are extracted in a gray value pro-
file perpendicular to the road direction. At least one
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edge point must be present for a successful track-
ing. In the profile tracker, an “average” road profile is
matched to the current gray value profile perpendicu-
lar to the road direction. If the correlation fails, either
a change of road surface material or a disturbance
on the road is assumed. Limited model knowledge
is used to fuse the results of the two trackers, to ex-
plain failures of the trackers, and to continue or abort
the tracking. An interesting point is that the combina-
tion of the two trackers yields better results than each
tracker individually (McKeown, 1990).

In (Ruskoné et al., 1994, Airault et al., 1994), an ap-
proach for road network extraction on high resolution
imagery is presented. In the first stage, a low level
road tracker following homogeneous elongated areas
is started at automatically extracted seed points. In
the second stage, hypotheses for the connection of
the extracted road parts are generated and checked
based on geometric criteria like distance and direc-
tion. The final stage consists of a geometric adjust-
ment of the extracted road network based on snakes.
In urban areas, roads are extracted by detecting cars
with a neural network classifier, and then collinear
cars are grouped into roads (Ruskoné et al., 1996).

The approach presented in (Price, 1999) extracts
roads from high resolution images of urban areas.
The road network is modeled as a regular grid with
roads of approximately constant width. It is assumed
that longer portions of the road sides are visible. The
grid spacing and orientation is initialized using three
points on the grid. The expansion, verification, and
refinement of the grid is based on edge and DEM
(Digital Elevation Model) information as well as con-
text.

The above approaches show individually promising
parts of a road model and extraction strategy. Data
from different sources is often useful. For exam-
ple, in urban areas DEM information helps to remove
false road hypotheses. What is missing is the use
of different resolutions of the image data, e.g., to
eliminate disturbances like cars on the roads (Mayer
and Steger, 1998). Furthermore, context information
has proven to be very important. The strategy of
road tracking is promising in automatic approaches
to bridge gaps in the extracted road hypotheses. Lo-
cal grouping is also very useful in this case. However,
the function of roads is never modeled explicitly, and
hence the use of global grouping seems to be an es-
sential step to generate a correct and complete net-
work. Furthermore, all of these knowledge sources
need to be integrated into a single system.

3 MODELING ROADS

The examples for roads in aerial imagery which are
given in Fig. 1 indicate some of the problems for au-

tomatic road extraction. Although, in the real world,
roads are objects with a smooth and firm surface and
quite well defined geometrical properties, e.g., maxi-
mum curvature or lower and an upper bound for their
width, their appearance in aerial imagery can be quite
different. Small objects like cars or markings inter-
fere the homogeneity of the road surface. They can
fairly easily be eliminated using the scale-space prop-
erties of roads. Larger objects, like buildings or trees,
are more difficult to handle. These 3D-objects pose
problems due to occlusions and shadows, which can-
not be treated using scale-space theory. However, it
is clear, that depending on the resolution and on the
complexity of the scene, different features and differ-
ent strategies seem to be useful for automatic road
extraction.

Figure 1: Roads in aerial imagery

After this short analysis of the appearance of roads
and the problems which might occur when extracting
roads, we now explain the road model on which the
extraction is based:

For the proposed approach, the model comprises ex-
plicit knowledge about geometry (road width, par-
allelism of road sides, . . . ), radiometry (reflectance
properties), topology (network structure), and context
(relations with other objects, e.g., buildings or trees).
The model described below consists of two parts:
The first part describes characteristic properties of
roads in the real world and in aerial imagery, and rep-
resents a road model derived from these properties.
The second part defines different local contexts and
assigns those to the global contexts. In this way, the
complex model for the object road is split into sub-
models that are adapted to specific contexts.
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A description of roads in the real world can be de-
rived from their function for human beings: roads
are defined as a place, where one may ride, i.e.,
an open or public passage for vehicles, persons, or
animals. They are important for communication and
transportation between different places. Therefore,
roads are organized as a network. The denser an
area is inhabited and the more intensively it is used,
the denser the road network is. With respect to their
importance, network components are classified into
a hierarchy of different categories with different at-
tributes. According to the different categories, roads
differ with respect to minimum curvature radius and
maximum allowed slope. Some important attributes
for parts of the road network are the type and state
of the road surface material, existence of road mark-
ings, sidewalks, and cycle-tracks, or legal instruc-
tions, such as traffic regulations.

The appearance of roads in aerial imagery strongly
depends on the sensor’s spectral sensitivity and its
resolution in object space. The proposed approach
is restricted to gray-scale images and only scale de-
pendencies are considered. In images with low reso-
lution, i.e., more than 2 m per pixel, roads mainly ap-
pear as lines that form a more or less dense network.
Contrarily to this, in images with a higher resolution,
i.e., less than 0.5 m, roads are projected as elongated
homogeneous regions with almost constant width.
Here the attainable geometric accuracy is better, but
background objects like cars, trees, or buildings dis-
turb the road extraction more severely, cf. Fig. 1.

In a smoothed image — which corresponds to a re-
duced resolution — lines representing road center-
lines can be extracted in a stable manner even in the
presence of these background objects. The smooth-
ing eliminates substructure of the road, e.g., vehicles
or markings. This can be interpreted as abstraction,
i.e., the object road is simplified and its fundamental
characteristics are emphasized, as shown in (Mayer
and Steger, 1998).

From the last paragraph it follows that the fusion of
low and high resolution can contribute to improve the
reliability of road extraction. Additionally, details like
road markings, which can be recognized at a reso-
lution of less than 0.2 m, can be used as further evi-
dence to validate the detected road hypotheses. On
one hand, using multiple resolution levels improves
the robustness of the road extraction. On the other
hand, it results in different features at each resolu-
tion level, and this makes it necessary to combine all
features of all resolution levels into one road model.

3.1 Road Model

The road model condensed from the findings above
is illustrated in Fig. 2. This road model describes ob-
jects by means of “concepts,” and is split into three

levels defining different points of view. The real world
level comprises the objects to be extracted and their
relations. On this level the road network consists
of junctions and road links that connect junctions.
Road links are constructed from road segments. In
fine scale, road segments are aggregated by lanes,
which consist of pavement and markings. For mark-
ings there are two specializations: Symbols and line-
shaped markings. The concepts of the real world are
connected to the concepts of the geometry and mate-
rial level via concrete relations (Tönjes, 1997), which
connect concepts representing the same object on
different levels. The geometry and material level is
an intermediate level which represents the 3D-shape
of an object as well as its material (Clément et al.,
1993). The idea behind this level is that in contrast
to the image level it describes objects independently
from sensor characteristics and viewpoint. Road seg-
ments are linked to the “straight bright lines” of the
image level in coarse scale. In contrast to this, the
pavement as a part of a road segment in fine scale
is linked to the “elongated bright region” of the im-
age level via the “elongated, flat concrete or asphalt
region.”

Whereas the fine scale gives detailed information, the
coarse scale adds global information. Because of
the abstraction in coarse scale, additional correct hy-
potheses for roads can be found and sometimes also
false ones can be eliminated based on topological cri-
teria, while details, like exact width and position, or
markings, from fine scale are integrated. In this way
the extraction benefits from both scales.

3.2 Context Model

The road model presented above comprises knowl-
edge about radiometric, geometric, and topological
characteristics of roads. This model is extended by
knowledge about context: Background objects, like
buildings, trees, or vehicles, can support road extrac-
tion (e.g., usually there is a road to every building),
but also interfere (e.g., a building occludes a part of a
road; roofs might look similar to roads). This interac-
tion between road objects and background objects is
modeled locally and globally .

With the local context, typical relations between a
small number of road and background objects are
modeled. Situations, in which background objects
make road extraction locally difficult are in an open
rural area, for example, paths to agricultural fields
or individual cars. Driveways to buildings are more
likely to cause problems in urban areas. Buildings
are mostly parallel to roads. In urban areas sidewalks
and cycle tracks are running parallel to roads, poten-
tially hindering or supporting road extraction. The lo-
cal context occlusion shadow illustrates, e.g., a situ-
ation where a high object occludes a part of a road
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Figure 2: Road model

or casts a shadow on a road. Other local contexts
are, e.g., rural driveway, building driveway road, or
sidewalk/cycle-track parallel to road. These basic lo-
cal contexts can be aggregated into more complex lo-
cal contexts, in which, for example, occlusion shadow
and building driveway road segment interact.

The above mentioned contexts are more specific for
rural areas. In addition to Fig. 2, Fig. 3 shows
some relations between markings, junctions, lane
segments, and vehicles. These are the relations the
road extraction in urban area is based on in Sect. 5.
Vehicles are aligned with lanes. There are two types
of markings: Aligned markings define the borders of
the lanes, orthogonal markings define start or end of
a lane.

is aligned

occludes

divides

Building

Vehicle

Road segment Complex junction

Lane segment

Orthogonal markings

Markings

Aligned markings

is beside

borders

Figure 3: Local context for urban areas

Relations to background objects and their relevance

for road extraction depend also on the region where
they occur. As mentioned above, roads in urban or
suburban areas have a quite different appearance
from roads in forest areas or in open rural areas. The
differences in appearance are partly consequences
of different relations between roads and buildings. In
downtown areas, buildings typically are closer and
more parallel to roads. Therefore, this paper pro-
poses to use different local contexts for different ar-
eas, i.e., different global contexts. Here, urban, for-
est, and rural contexts are distinguished. The global
context is not only relevant for the importance of the
local contexts, but also for the extraction of objects.
Experience shows that approaches that are suitable
for road extraction in rural areas usually cannot be ap-
plied in other global contexts without modifications. In
forest or urban areas other parameter settings might
be necessary or, more likely, even a completely dif-
ferent approach is required. From this, it is clear that
the global context enables a more efficient use of the
knowledge about roads. In Fig. 4, some frequently
occurring local contexts are assigned to the global
contexts.

Note, however, that the use of knowledge about lo-
cal context and the verification of specific relations
between local objects will in most cases be possi-
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ble in high resolution imagery only, because the im-
age features which contribute to the local context are
usually not very prominent. Therefore, the local con-
text is more tightly connected with the high resolution,
whereas information about global context usually can
be derived from images with a resolution > 2 m and
is useful to guide the road extraction in both scales.

4 ROAD EXTRACTION IN RURAL AREAS

4.1 Strategy

The knowledge about how and when individual parts
of the model can be exploited optimally is condensed
into the extraction strategy. The proposed scheme
for roads in rural areas consists of two levels: On
the first level (Sect. 4.2) knowledge about radiometry,
local geometry and local context is used, and road
hypotheses are derived by fusion of line and edge
extraction, i.e., the scale-space behavior of roads is
employed. On the second level (Sect. 4.3) the con-
nectivity of roads, i.e., the use of knowledge about
their topology, is enforced using global criteria to de-
rive connection hypotheses instead of purely local cri-
teria as it is done on the first level.

The basic idea of the proposed strategy is to focus
the extraction process on those parts of the road net-
work that can be detected most easily and reliably,
and that are in addition useful to guide the further
extraction. How difficult the extraction of a certain
feature is depends strongly on the context in which
it is to be extracted. In urban and forest areas knowl-
edge about geometry and radiometry alone is often
insufficient because of occlusions and shadows. On
the other hand, with a simple model, relying only on
attributes of the road itself, good results can be ex-
pected for rural areas. According to the “easiest first”
principle on the local level salient road segments are
extracted first and then connection hypotheses, i.e.,
the non-salient road segments, between the salient
parts of the road network are verified.

As a consequence of these considerations, road ex-
traction starts in rural areas. Figure 5 shows the re-
sult of a texture-based segmentation of rural areas in
the image with a reduced resolution of about 4 m. The

a) b)
Figure 5: a) Image at low resolution b) Classification
of open rural area

segmentation makes use of the texture filters pro-
posed by (Laws, 1980) and incorporates morpholog-
ical operations to smooth the boundaries. The pixel
size on the ground for this example is about 0.25 m in
the high resolution image.

4.2 Local Level

4.2.1 Salient Roads

On the local level we use lines and edges as image
features to construct road segments. According to
the road model, apart from the original image also
a version of the image with a reduced resolution is
used. The lines extracted in the reduced-resolution
image (about 2 m) are used to select edges extracted
from the original resolution that are candidates for
road sides (cf. Fig. 6 a). In order to reduce the amount
of data lines and edges are approximated by poly-
gons. Here, the term “edge” is used for an individual
segment of an edge polygon. Edges that are candi-
dates for road sides must fulfill the following criteria:

• The distance between pairs of edges must be
within a certain range. Minimum and maximum
distance depend on the classes of roads to be
extracted.

• The edges have to be almost parallel, i.e., there
is an overlap and the differences in the direction
of the edges is low. For long edges a smaller
direction difference is tolerated because the di-
rection is the better defined the longer an edge
is.
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a) b)
Figure 6: a) Input to the fusion process: hypotheses for road axes (dashed, black), hypotheses for road sides
(solid, white) and other edges (dotted, white). b) Final road side hypotheses.

• The area enclosed by a pair of parallel edges
should be quite homogeneous in the direction
of the road. Markings perpendicular to the road
axis or tire tracks can cause inhomogeneities.

• In addition, for each pair of candidates for road
sides, a corresponding line has to exist in the re-
duced resolution.

The selection of edges as road side candidates and
the fusion of line and edge extraction is described in
detail in (Steger et al., 1995). The fusion of lines
from low resolution and edges from high resolution
has proven to be very useful in order to get more reli-
able results. This advantage is also confirmed by the
results of (Trinder and Wang, 1998) who use a quite
similar approach to fuse low and high resolution im-
agery for road extraction.

From these road sides, road segments are con-
structed (Fig. 7). The road segments consist of
quadrilaterals which are generated from parallel road
side candidates. Quadrilaterals sharing points with
neighboring quadrilaterals are connected. The ge-
ometry of the road segments is represented by the
points of their medial axes, attributed by the road
width. These road segments are the semantic ob-
jects which are used as input for the extraction of the
non-salient parts of the road network.

The computational effort for the construction of road
segments depends on the number of involved lines
and edges. In order to reduce this effort, hypothe-
ses for road sides and road segments are gener-
ated locally, i.e., by working on small, overlapping im-
age patches. In a second step, the hypotheses for
road segments are collected from all patches, con-
flicting road segment hypotheses caused by overlap-

Figure 7: Road segments

ping patches are examined, and only the best hy-
potheses are kept (Fig. 8).

4.2.2 Non-salient Roads

In the previous step only a small part of the knowl-
edge about roads was explored. The extracted road
segments are clearly visible in the image, and —
based on local criteria — they have a high probability
for being roads. Non-salient roads are those parts of
the road network that could not be extracted due to
a lack of suitable image features. For the extraction
of non-salient road segments, additional knowledge
about roads must be applied or the parameters of the
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Figure 8: Road segments

algorithms used before have to be adapted. We as-
sume that non-salient roads correspond to gaps be-
tween salient road segments. Therefore, the extrac-
tion of non-salient roads is equivalent to the problem
of linking salient roads extracted in Sect. 4.2.1. In ad-
dition to the extraction of non-salient road segments,
we want to get rid of incorrect hypotheses for salient
road segments.

Most of the road segments derived from the fusion
of line and edge extraction are not directly connected
and they are quite short. The linking of correct and
the elimination of false hypotheses is achieved by
grouping the salient road segments into longer seg-
ments. The grouping is done according to the “hy-
pothesize and test” paradigm. Hypotheses about
which gaps should be bridged are generated start-
ing with geometric criteria (absolute and relative dis-
tance, collinearity, width ratio) and radiometric criteria
(mean gray value, standard deviation). Because in-
formation about only two road segments is involved,
we call this local grouping, in contrast to the group-
ing in Sect. 4.3 which additionally uses global crite-
ria. Then, the hypothetic road segments are verified
in the image. The verification consists of up to three
levels: In the first level, radiometric properties of the
new segment are compared to the segments to be
linked. The geometry of the new segment is defined
by the direction at the endpoints of the segments to
be linked. If the radiometric attributes do not differ too
much, the connection hypothesis is accepted. If not,
the verification switches to the second level. Here,
a so-called “ribbon snake” is applied to the gradient
image, to find an optimum path for the link. If this ver-
ification fails too, a third level is used, in which an ex-
planation by local context is tried to be achieved. The

local context is used as last and apparently weakest
verification method to explain and close gaps.

According to the above mentioned criteria, hypothe-
ses for connections are generated and verified. This
is done iteratively. For every new iteration the maxi-
mum length of a gap to be bridged is increased, while
the thresholds for other criteria are only slightly re-
laxed. To avoid hard thresholds for a single crite-
rion in the evaluation of a hypothesis for a connec-
tion, all criteria are combined into one value. In par-
allel to increasing the maximum length of the gaps
that are allowed to be bridged, short and uncon-
nected hypotheses for road segments, i.e., hypothe-
ses that are false with a high probability, are elimi-
nated. This mainly collinearity-based strategy some-
times fails, especially for curved segments.

(a) (b)

(c) (d)
Figure 9: Optimization steps of a “zip-lock” ribbon.
(a)-(c) Dotted lines indicate the passive part of the
ribbon. White parts are currently optimized. Black
ends indicate the result of the optimization so far. (d)
Final result

After increasing the threshold for the distance, in
the following iterations the constraints for collinear-
ity are relaxed as well. During this phase of the
grouping, snakes, (Kass et al., 1988), especially rib-
bon snakes, become increasingly important. Snakes
work according to the principle of energy minimiza-
tion: The so-called “internal energy” enforces geo-
metric constraints, e.g., length and smoothness of
a path. In contrast to this, the so-called “external
energy” pushes the snake towards image features.
By minimizing internal and external energy simulta-
neously, image information and geometric properties
are fused. As an extension to the conventional snake,
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the ribbon snake has an additional parameter for the
width at each line point. The image features the rib-
bon snake is attracted to are anti-parallel edges on
both sides of its center line. Using ribbon snakes,
road extraction becomes feasible for very fragmented
edges and in cases where only one road side is vis-
ible. Bridging a gap between two road segments is
performed in two phases: In the first phase, the width
of the ribbon is fixed and only the position of its axis
is optimized. This is done in analogy to a zip-lock,
but starting from both ends, c.f., “zip-lock” snake in
(Neuenschwander et al., 1995). The zip-lock behav-
ior of the ribbon is achieved by splitting the ribbon in
active and passive parts, and only the active parts
are optimized. Figure 9 illustrates how this zip-lock
ribbon is applied.

(a) (b)

(c) (d)
Figure 10: Extraction of non-salient roads. (a) Selec-
tion of initial hypothesis (b) Optimal path; (c) Verifica-
tion by optimization of width (d) Selection of hypothe-
sis with constant width

In the second phase, only the width is optimized, i.e.,
adapted to the image features. The hypothesis is ac-
cepted if the variance of the width is still low after this
second step. Figure 10 shows that this is possible
even if the road sides do not correspond to strong
edges in the image. A more detailed description of
this technique is given in (Mayer et al., 1998), where
ribbon snakes are initialized by lines extracted from
low resolution. With this, the automatic extraction
of salient and non-salient roads can be completely
based on the snake technique. The results of the
completely snake based approach are quite similar to
the grouping based approach described in this paper,
see (Heipke et al., 1998). However, for the proposed
way to bridge gaps between salient road segments
it makes no difference, whether the road segments
were constructed by a grouping process or by any
other method.

In those cases where the evidence in the image is
insufficient to confirm a connection hypothesis, infor-

Figure 11: Road hypotheses

mation about the local context of the particular road
segment is considered. In other words, a plausible
explanation must be given why not enough evidence
for a road can be found in the image and the gap is
allowed to be bridged in spite of this. In this case,
especially the local context occlusion shadow is im-
portant. The main part of the information needed for
it can be derived from a DEM and information about
when and where the image was taken (Eckstein and
Steger, 1996). With this, shadowed and occluded ar-
eas can be predicted and used to explain the gap.
For shadows the coarse prediction can be refined in
the original image. However, the information about
background objects is not required with a high level
of detail and accuracy.

Figure 11 displays the road hypotheses derived from
the road segments shown in Fig. 8.

4.2.3 Road Junctions

After the generation of hypotheses for connections
and their verification, the road network must be con-
structed, i.e., the junctions that link the roads must be
extracted. The generation of hypotheses for junctions
is mainly based on geometric calculations: Extracted
road segments are extended at their unconnected
end points. The length of the extension depends
on length and width of the particular segment. If
an extension intersects an already existing road seg-
ment, a new road segment is constructed, which con-
nects the intersection point with the extended road
(Fig. 12). The verification of these new road seg-
ments is done in the same manner as for the gaps.

Ideally, after this step all road hypotheses are con-
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(a)

(b)

Figure 12: a) Road segments (white) and extensions
(black, dotted) b) Road segments and final junctions

nected, and there is a path between every pair of
points on the extracted road network. Usually, such
a result cannot be expected (Fig. 13). First, due to
the limited size of the images some of the nodes will
be outside of the image. Second, the results are not
error-free. Especially in urban and forest areas only
fragments of the network can be expected to be ex-
tracted. Because the extraction is primarily based on
local information and is reliable only in rural areas,
the network characteristics of roads are not optimally
exploited. However, within a limited scope, it is possi-
ble to use topological relations to rate the importance
of the roads in the network and to eliminate some of
the remaining false hypotheses.

Figure 13: Road axes and junctions

Up to now primarily local criteria were applied to con-
struct a road network. In Sect. 4.3 we make use of

global topological properties of roads to further im-
prove the results with respect to completeness and
connectivity.

4.3 Global Level

The intrinsic function of roads is to connect differ-
ent “important places,” even if they are far away from
each other. Hence, roads form a (hierarchical) net-
work that is mostly optimized to provide an economic
and convenient way for reaching different places. Be-
cause of this property, searching for the globally best
connection between such places is an essential step
for road extraction. Moreover, since there usually ex-
ists only one good connection between two “impor-
tant places” (Ruskoné et al., 1994) (at least in open
and rural terrain) we restrict the search to the best
connection between two places.

In addition to exploring the global road properties,
the scheme should provide reliable road extraction
results by itself. In some cases, images with a res-
olution of less than 0.5 m needed for an extraction
strategy like the one described in Sect. 4.2 might not
be available. Thus, the extraction should not exclu-
sively rely on the results of the local level. Instead, a
flexible strategy is desirable which is able to integrate
and process different sources. Hence, the scheme
outlined in this paragraph is basically designed for the
extraction of roads from low resolution imagery that,
for instance, comprises aerial images which are down
sampled to a pixel size of 1–4 m or satellite imagery
with a ground resolution of 6–18 m, e.g., as in (Wiede-
mann and Hinz, 1999), MOMS-2P imagery. Addition-
ally, other information sources can be integrated in
the early stage of processing. In the remainder of this
section, such an integration of another source is illus-
trated by combining the results of the previous sec-
tion, i.e., the road segments after local grouping, with
the proposed algorithm for global grouping. By doing
so, we are able to exploit both the local shape and
reflectance features and the global network charac-
teristics of roads.

With the above mentioned range of resolutions, it is
obvious that, when using low resolution imagery only,
both road model and extraction strategy are only able
to capture the basic shape and reflectance features
that roads exhibit in the real world. In contrast to
these local properties, the global topology of roads,
i.e., the network characteristics, play the major role.
However, since the image domain only covers a part
of the whole road network, different sub-networks,
which are not necessarily connected, may occur in
the image.

Having these requirements in mind, the following ex-
traction strategy has been developed: First, bright
lines are extracted and processed in order to build up
road segments. Optionally, the road segments can
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be fused with the results of the local level. Then,
a weighted graph is constructed from the road seg-
ments and from possible connection hypotheses be-
tween them. Thereafter, pairs of “important places”
are selected and the optimal path between each pair
is calculated. The extracted road network results
from the combination of all optimal paths computed
through the graph. In the following, a detailed de-
scription of each step is given.

4.3.1 Low Level Processing

Line extraction is performed using the approach de-
scribed in (Steger, 1998). It is based on differen-
tial geometry and captures the local radiometric road
characteristics. To initialize the procedure, a few, se-
mantically meaningful parameters have to be deter-
mined: The maximum width of the lines to be ex-
tracted can be chosen according to the road width
scaled to the image. The two hystereses values that
control the process of linking individual line pixels into
pixel chains can be derived from the expected gray
value contrast between roads and their surroundings.
It can be decided whether bright or dark lines should
be extracted. The result of the line extraction is a
set of pixel chains and junction points with sub-pixel
precision. Additionally, local line attributes like width,
direction, and contrast are obtained at each line pixel.
Due to the exclusive use of local road characteristics
(for low resolution images) the result is not complete
and contains false alarms, i.e., some roads are not
extracted and some extracted lines are not roads.

During the next step, road segments are constructed
from the extracted lines. This has two different goals:

• Reduce the probability that a road segment rep-
resents partly a road and partly another linear
structure, i.e., a feature should either completely
correspond to a road or to none at all.

• Obtain the attribute values describing the quality
of a road segment with respect to the model.

The attribute values of road segments are used to
include additional evidence about the presence of
roads into the grouping process at a later stage.
Therefore, it is necessary to ensure that the lines to
which the attributes belong either completely corre-
spond to roads or to linear structures not being roads,
i.e., lines have to be split at the point where they might
cross the road side. A careful analysis of the behav-
ior of several line attributes has shown that the most
significant feature for a change in the line semantics
(“road”/“not road”) is high curvature. Hence, lines are
split at points where the direction difference between
two consecutive polygon points on the line exceeds
a given threshold. Please note that this procedure
does not exclude any part of a line. A line might be

erroneously split, i.e., the line is split although it com-
pletely belongs to a road (for instance in mountainous
regions where roads often are highly curved). How-
ever, there is still a high probability that the split parts
are joined again if they are found to be part of the
paths computed during road network generation.

Each resulting line defines a road segment. Assum-
ing the image resolution is known, the following at-
tribute values are calculated to obtain an extended
description of each road segment:

• length of a road segment,

• straightness of a road segment, i.e., the standard
deviation of its direction,

• width of a road segment, i.e., the mean width of
the extracted line,

• width constancy of a road segment, i.e., stan-
dard deviation,

• reflectance constancy of a road segment, i.e.,
standard deviation of the intensity values along
the segment,

• flatness of a road segment, i.e., the mean of the
absolute gradients along the segment.

4.3.2 Fusion

In order to make use of road data originating from dif-
ferent sources, we developed a method for fusing the
road segments with every kind of linear data. Here,
we combine the center axes of the road segments
constructed and verified in the high resolution image
with the road segments obtained from the low reso-
lution image, i.e., after the fusion both types of seg-
ments are contained in one set of linear road data.
Since the road segments achieved from the low res-
olution image are less constrained, a more complete
network might be extracted. Segments, or parts of
segments, which lie within a buffer with a suitable
chosen width (e.g., 3 m), are candidates for unifica-
tion. In addition, if two candidates have a direction
difference less than, e.g., 15◦, they are unified. Oth-
erwise, they are checked for an intersection.

4.3.3 Graph Representation

From the resulting set of road segments, an initial un-
weighted graph is constructed. The road segments
define the edges of the graph, and their end points
represent the set of vertices. In case of junctions, i.e.,
if two or more road segments end in the same point,
only one vertex of the appropriate degree is inserted
in order to preserve topology.

The attribute values of the road segments are used
to weight the graph by associating every edge with
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a single weight. This is done by defining linear fuzzy
functions ranging from 0 to 1 (Mendel, 1995) for trans-
forming the attribute values into fuzzy values. These
fuzzy values are aggregated by the fuzzy and opera-
tion into one overall fuzzy value for each edge, i.e., an
overall fuzzy value 1 stands for a road segment that
matches the road model perfectly and 0 means that
the road segment should not be considered anymore.

The following phase of processing is addressed to
prepare the graph for detection of possibly missing
road junctions at a later stage. Due to deviations
from the road model, it might happen that some of
the road junctions, especially the larger ones, are not
detected. Junctions are, however, an essential topo-
logical part of the road network. Hence, it should (at
least) be possible to form connection hypotheses in
situations where a junction might be present. For
this reason, the edges of the graph are split at points
which can be regarded as a priori candidates for junc-
tions, and a new vertex of degree 2 is inserted. See,
e.g., point P in Fig. 14 that lies on segment S1 closest
to the end of segment S2.

S2

S1 P

Figure 14: Candidate for a junction

A reliable decision whether a junction candidate truly
represents a road junction is not possible at this stage
of processing. It could be caused by blunder, e.g.,
by other linear structures close to a road like certain
kinds of vegetation. However, the splitting of a road
segment affects its properties (e.g., its length), which
leads to an incorrect evaluation in such cases. There-
fore, the fuzzy value of a split edge is inherited, i.e.,
the weights in the graph are not changed by inserting
a new vertex.

The resulting weighted graph is used to generate and
evaluate connection hypotheses (Fig. 15). The fol-
lowing criteria are introduced to measure the quality
of a hypothesis:

• the direction difference between adjacent road
segments, where either collinearity (within a
road) or orthogonality (at a T-junction) are pre-
ferred,

• the absolute length of a connection,

• the relative length of a connection (compared to
the length of the lower rated of the adjacent road
segments),

• the mean gradient along the connection,

• an additional constraint which avoids that a con-
nection hypothesis is evaluated higher than its
adjacent road segments.

As above for road segments, linear fuzzy functions
are defined to obtain individual fuzzy values for each
criterion, which are then aggregated into an overall
fuzzy value by the fuzzy and operation. A special
case is the evaluation of the direction difference be-
tween two road segments. In order to either prefer the
continuation of a road or to support a possible road
junction, a fuzzy function with two peaks is defined
(e.g., at 10◦ and 85◦), one supporting the collinearity
of two segments and one supporting their connectiv-
ity with respect to a T-junction. See Fig. 16 for an
illustration. Since a connection hypothesis can rep-
resent only one of these grouping principles, but not
both at the same time, the proposed examination of
the direction difference can be understood as classifi-
cation of the connection hypotheses in road connec-
tions and junction connections, whereby each con-
nection is associated with a fuzzy value. Depending
on this classification one may chose different parame-
ter settings of some of the other fuzzy functions, e.g.,
for evaluating the absolute distance.

0 5 45 60 85 90

1

0

[deg]

Figure 16: Fuzzy function for evaluating direction dif-
ference

4.3.4 Road Network Generation

The extraction of the road network relies on the se-
lection of “important places” (seeds), which are then
connected by the optimal path through the network.
Such places are usually buildings, industrial areas
and other sites of interest. Since this approach ex-
clusively deals with roads without considering addi-
tional objects, we define “important places” as road
segments that represent portions of the road network
with high probability. An indication for the probabil-
ity of a road segment being truly a road is its fuzzy
value. Hence, all road segments yielding a high eval-
uation are chosen as seeds for road network gener-
ation. Please note that this threshold can be derived
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(a) (b)
Figure 15: Weighted graph of road segments based on lines (a), with inserted connection hypotheses (b)

from semantically meaningful and reasonable param-
eters using the same fuzzy functions as before, e.g.,
by demanding that a seed must have a given mini-
mum length.

It might happen that several disconnected sub-
networks instead of one complete road network are
visible in the image. Thus, the strategy for road
network extraction should be able to extract discon-
nected road networks but still should incorporate the
function of roads connecting places far away from
each other. To this end, only those pairs of seeds
are considered for path calculation which guarantee
that the length of the resulting path exceeds some
suitably chosen threshold, e.g., 1 km. A lower bound
of the respective path length can be achieved with-
out executing path calculation by summing the length
of both road segments and the minimal distance be-
tween their endpoints (see Fig. 17). With this strat-
egy, larger isolated parts of the road network can be
detected without losing the postulated globality of the
proposed grouping algorithm.

S1

S2
C

Figure 17: Minimum path length: lmin = lS1 + lS2 + lC

Now, the basic idea is to find the shortest paths in
the weighted graph with suitably chosen distances.
Therefore, the weights in the graph should reflect the
true distances in the object, but depending on how
a road segment or a connection hypothesis is eval-
uated, the distance between two vertices should be
increased to make it harder to bridge obviously bad
links. If a link is considered perfect, i.e., has the
fuzzy value 1, the true distance between the vertices

is used. If the link has the fuzzy value 0, its weight
must be ∞. Therefore, the following formula is used
to construct the weighted graph:

wi,j =




li,j/ri,j if vertices i and j are connected
by a road segment of length li,j
and ri,j > 0

di,j/ri,j if i and j are not connected in
the original graph, but ri,j > 0
(di,j is the Euclidean distance)

∞ otherwise (no edge in the graph)

where wi,j is the weight of the edge between the ver-
tices i and j.

The final step is the computation of the respective
optimal path between each seed pair. This is car-
ried out by using the Dijkstra-Algorithm (Knuth, 1994).
The combination of all detected paths defines the ex-
tracted road network.

It should be noted that the resulting network is in-
homogeneous with respect to the geometric accu-
racy since parts of the network originate from purely
geometry-based gap bridging without considering the
radiometric content in between. This implies a final
verification of the bridged gaps using similar criteria
as in Sect. 4.2.

4.3.5 Algorithmic Aspects

Grouping in general is exponential in the number
of features to be grouped. In our case, only pairs
of vertices are evaluated (O(n2)). The Dijkstra-
algorithm has a complexity O(n log n). Therefore, in
the worst case, the presented approach has an over-
all complexity O(n3 log n). Nevertheless, restrictions
on the search space (without affecting the final result)
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(a) Final result after global grouping (b) Evaluated result
Figure 18: Result and evaluation. Bold: Correct extraction. Thin: False extraction. Dashed: Missing extraction.

should be included whenever possible. In our imple-
mentation the following points help to minimize the
runtime:

• Use of range search if only local relations be-
tween features are relevant (as in the early
stages of processing). Line features are de-
scribed by their bounding box plus a buffer cov-
ering the area where a possible grouping candi-
date has to be searched for.

• Ordering the criteria for local evaluation of the
connection hypotheses such that the most sig-
nificant criteria are calculated first (e.g., the dis-
tances). The calculation can be aborted if the
overall score becomes too low for further consid-
eration of a particular hypothesis.

• Partitioning the graph in its connected compo-
nents before selecting seeds and computing best
paths. Only those seed pairs are selected which
are contained in the same connected compo-
nent. By doing so, it is guaranteed that only
successful path calculations are carried out. Of
course, the efficiency of this strategy depends
on the number of connected components but
the computational effort of calculating the con-
nected components is negligible compared to the
possibly drastical reduction of seed pairs, espe-
cially if the algorithm has to cope with a highly
fragmented segmentation result that cannot be
linked completely.

• Ordering the list of seed pairs such that the pre-
sumably longest paths are computed first. Ev-
ery seed pair that lies on one single path already

found can be removed before calculating the next
path.

4.4 Evaluation

Internal self-diagnosis and external evaluation of the
obtained results are essential for any automatic sys-
tem. In the long run these factors are of major impor-
tance for the introduction of the system into practi-
cal applications. Both, internal self-diagnosis and ex-
ternal evaluation should yield quantitative measures
which make different results commensurable. Here,
we deal with the external evaluation of the automat-
ically extracted road data by means of comparing
them to manually plotted linear road axes used as
reference data. In the following the evaluation proce-
dure is briefly described. More details can be found
in (Heipke et al., 1998).

The comparison is carried out by matching the ex-
tracted data to the reference data using the so-called
“buffer method,” in which every portion of one network
within a given distance (buffer width) from the other
is considered as matched. For the evaluation of the
road extraction results a number of quality measures
is defined based on the matching results. Two ques-
tions can be answered by the quality measures: (1)
how complete is the extracted road network, and (2)
how correct is the extracted network? The complete-
ness indicates how much is missing in the network,
whereas the correctness is related to the probability
of an extracted linear piece to be indeed a road.

Completeness is defined as the percentage of the ref-
erence data that is explained by the extracted data,
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i.e., the percentage of the reference data which lies
within the buffer around the extracted data:

completeness =
length of matched reference

length of reference

The correctness represents the percentage of cor-
rectly extracted road data, i.e., the percentage of the
extracted data that lies within the buffer around the
reference network:

correctness =
length of matched extraction

length of extraction

In addition, the geometric accuracy of the extraction
is assessed. It is expressed as the RMS difference
between the matched extracted and the matched ref-
erence data.

The geometric accuracy of the final result in Fig. 18
is about 0.54 m, whereas the accuracy of the results
of the previous steps is about 0.37 m. The accuracy
decreases since all during the global grouping addi-
tionally detected roads result either from line extrac-
tion in low resolution (here 2 m) or from connection
hypotheses between the lines which are inserted as
straight segments without considering the radiometry
in between.

In contrast to the RMS value, both the completeness
and the correctness have increased from 83% to 89%
and from 90% to 95%, respectively, because of the
global grouping step. However, the main improve-
ment caused by the global grouping, which is cap-
tured by none of the used quality measures, is the
topological connectivity of the extracted network. As
illustrated in Fig. 18, now all road sections are topo-
logically linked to each other.

The high quality of this result proves that the ap-
proach extracts most of the roads in rural areas, but it
fails in some parts of the residential areas. Although,
compared to the local level, the global grouping step
has improved the general network connectivity, some
of the streets in the village are not detected at all.
One obvious reason for this are fragmented or miss-
ing parallel structures defining the road sides. Such
structures, however, are the basic features for con-
structing road segments, and by this way they are the
most essential part of the approach. In other words,
for a successful and reliable road extraction in subur-
ban and, especially, urban areas, the focus must be
turned to another part of the model and the use of dif-
ferent extraction strategies is required. For example,
it can be expected that a thorough integration of DEM
information, which is not implemented by now, might
improve the results, i.e., wrong hypotheses for roads
that lie on the roofs of buildings can be detected and
eliminated more easily.

A quantitative evaluation of the results for rural areas
according to the above described evaluation scheme
has been carried out on a set of test images. This
evaluation has shown that the results for the open ru-
ral area are quite reliable (>95%) and also relatively
complete (80%–90%). The geometric accuracy for
the correctly extracted road axes is about one pixel,
i.e., 0.3–0.5 m.

5 ROAD EXTRACTION IN URBAN AREAS

In this section, the most obvious differences that
roads exhibit in rural and urban areas are exemplified.
Based on this, an extraction strategy is presented that
exploits parts of the road model not yet used above
(see Sect. 3). Finally, preliminary results are shown.

5.1 Appearance of Roads

The discussion of the results in Sect. 4.4 indicates
that the appearance of roads in the context of urban
areas is generally different from their appearance in
rural terrain.

Figure 19 visualizes two examples of urban roads. It
is obvious that these images exhibit a more complex
content than scenes showing rural areas since the
number of different objects and their heterogeneity is
much bigger. Generally, this implies that more details
of the road and context model must be exploited for
road extraction. In dense urban areas, for instance,
some of the roads comprise several lanes that are
linked by complex road crossings. What is more, by
the increase of the number of objects the complex-
ity of their relations grows, too. In the left image, for
example, some parts of the streets are occluded by
vehicles, especially at the road sides. Hence in this
particular case, a road is mainly defined by groups of
(parking) cars but not by parallel road sides or homo-
geneous surface. A similar relation is the occurrence
of shadows cast by high buildings. A road generally
appears bright in open areas, but in the case of shad-
ows two problems for the extraction arise: (1) the sur-
face is darkened significantly, and (2) at the margin
of the shadow regions, strong gray value edges in al-
most any direction may occur on the road disturbing
the usually homogeneous reflectance.

The right image shows a different kind of problem:
The roof of the rectangular building in the center of
the image could be wrongly identified as a parking lot
because its shape and reflectance properties match
the ones of a road-like object almost perfectly. Only
the combination with height data as given by a DEM
or, as in this case, implicitly given by a correspond-
ing shadow region provides enough information for
avoiding this misdetection.
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Figure 19: Examples of roads in urban areas

What follows is, that on one hand those features of
a road ought to be selected on which the influence
of the above mentioned phenomena is minimal. On
the other hand, it is very important to consider con-
text objects, in particular different kinds of vehicles, in
order to explain abnormal changes in the appearance
of a road.

Besides an (at least partially) homogeneous surface
and more or less densely arranged vehicles, one ob-
vious feature of roads in urban areas are road mark-
ings. To make use of them, we model roads and
complex junctions as a combination of several lanes
consisting of one or more lane segments. Dashed or
solid linear markings define the border of a lane seg-
ment. The interior of a lane segment should either
exhibit the typical homogeneous reflectance of the
pavement, or a vehicle that occludes the pavement
has to be detected. The influence of high objects is
considered twice: first, roads are allowed to be dark
(shadow), and second, they cannot lie on locally high
regions (buildings/dense vegetation).

5.2 Road Extraction Based on Markings

From these components of the model, the strategy for
road extraction based on markings is derived. Pre-
conditions for a successful extraction are, of course,
(1) markings must be painted on the roads, and (2)
they must be detectable in the image. Condition (1) is
in fact fulfilled for many roads, especially for the larger
ones in built-up areas. Condition (2) depends on the
image recording circumstances, i.e., especially the
resolution. Furthermore, it also depends on objects
that might occlude road markings, e.g., large cars or
trucks. Fortunately, as can be seen from Fig. 19, if
the viewing angle is not too oblique, lanes are gener-
ally wide enough so that markings are visible even if
cars are next to them.

The extraction starts with the segmentation of areas
of interest based on height information, e.g., as given
by a DEM. Then, faint bright lines are extracted and
iteratively connected to marking groups that repre-
sent the lane sides. On both sides of every group of
markings a lane segment is hypothesized. Lane seg-
ments are verified by different criteria using geomet-
ric, radiometric, and context knowledge. After group-
ing the lane segments into lanes, the global connec-
tivity of the lanes is checked and road junctions are
constructed. In the following, the individual steps are
described more in detail, and preliminary results are
given.

At the time of writing (July ‘99), the extraction strategy
is implemented up to the verification step of the hy-
pothesized lane segments. Further implementations
are still pending. Hence, the results shown below
should be regarded as intermediate step in an on-
going process of research.

5.2.1 Preprocessing

In the first step, areas of interest are segmented us-
ing the context of roads: most buildings are higher
than the road surface. Therefore, the parts that cor-
respond to locally high regions in a DEM are re-
moved from the image. In this example, the imagery
has been downsampled from approximately 0.25 m
to 3 m. The segmentation procedure compares a
smoothed version of the DEM with the original DEM
and removes regions where the height difference be-
tween both data exceeds a threshold. Both param-
eters, the size of the smoothing mask and the mini-
mum height difference, can be derived from the ex-
pected size and height of the buildings. Figure 20
shows the downsampled image, the DEM image, and
the segmented image.

The segmentation results are then transformed to
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Figure 20: Segmentation of Areas of Interest

the original image resolution, after which the image
is partitioned into small patches (Fig. 21a). Please
note that, based on a DEM, a variety of segmentation
techniques could be used in order to limit the search
space, e.g., gray value morphology. Furthermore, a
combination with other road extraction approaches,
e.g., (Price, 1999), where approximate roads posi-
tions can be derived easily, is possible at this stage.

5.2.2 Extraction and Grouping

During the next step, lines are extracted and grouped.
Fig. 21b) shows the line extraction result which is
obtained, by analogy to the previous sections, using
the approach of (Steger, 1998). Thereafter, lines are
grouped according to perceptual principles: absolute
and relative proximity of lines as well as their con-
tinuation. Basically, the algorithm performs in a very
similar way like the one outlined in Sect. 4.3. Only the
selection of seeds has been changed: from the lines
and possible connection hypotheses, a weighted
graph is constructed. In contrast to Sect. 4.3, the
optimal path between every pair of vertices with de-
gree 1 is calculated. By doing so, all possible groups
of lines that show rather good continuation are de-
tected. Thereafter, all paths are combined by means
of deleting identical parts of different paths and split-
ting paths at intersections. The resulting set of unique
and topologically consistent paths serves as input for
the next iteration. A new graph with new connection
hypotheses is constructed and the path calculation is
carried out again. This procedure is repeated until
no new connections are found. Figure 22a) visual-
izes the achieved result which represents the finally
extracted groups of markings.

(a) Image patch

(b) Extracted lines
Figure 21: Original image patch and extracted lines

5.2.3 Generation of Hypotheses

The strategy for generating hypotheses is intention-
ally designed to be very liberal. This has the follow-
ing two reasons: (1) Markings usually appear as very
faint lines. Thus, the line extraction may miss some of
them. Such a failure, however, can be often compen-
sated by the iterative grouping procedure described
above. (2) Due to occluding objects like big trucks
or trees, markings are more reliable to extract in the
center of a road than on its sides. Therefore, two
lane segments are hypothesized, one on each side
of a detected group of markings.

In order to construct lane segments from the mark-
ings, generic knowledge about the geometry of lanes
is used. Lanes have some lower bounds for length
and curvature. Therefore, after polygon approxima-
tion and splitting the groups of markings at sharp
bends, short polygon segments are deleted (e.g. <
5 m). Additionally, lanes have in general a certain
constant width, e.g., 3 m. Hence, lane segments are
constructed as rectangular regions on each side of a
group of markings (see Fig. 22b).

5.2.4 Verification

Since the lane segments are hypothesized in a lib-
eral manner, a sophisticated verification is needed in
order to discriminate good hypotheses from bad hy-
potheses. To this end, not only the geometric and ra-
diometric properties of lane segments are considered
but also knowledge about their context is included.
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(a) Grouped lines

(b) Hypothesized lanes
Figure 22: Grouped lines and hypothesized lanes

Here, the following criteria are used to collect evi-
dence for the presence of a lane segment:

• The surface of a lane segment should be homo-
geneous in the direction of a lane. In regions
where this criterion is not fulfilled, a car must be
present. Figure 23 visualizes the extracted ho-
mogeneous regions.

Figure 23: Homogeneous regions inside lanes

• In case of parallel marking groups or lane seg-
ments there is a high evidence for the presence
of a road (see Fig. 24).

• Additional markings at the margin of a lane seg-
ment are searched for by using lower thresholds
than in the previous steps. A lane segment is
rated depending on the percentage of dashed or
solid markings (see Fig. 25).

• Parallel edges or lines — possibly highly frag-
mented — at the margin of a hypothesized lane

Figure 24: Parallel lanes

Figure 25: Additionally extracted markings

segment support a hypothesis, too. As men-
tioned above, there is a low probability that mark-
ings can be detected at the sides of urban roads.
However, as can be seen from Fig. 26, in some
cases small pieces of markings, curbstones, and
other parallel structures that can support a hy-
pothesis might be found.

Figure 26: Extracted line and edge support

• Finally, orthogonal lines at the ends of lane seg-
ments are extracted (see Fig. 27). These lines
are interpreted as cross walks or stop-lines at
traffic lights. Such information is on one hand
useful to get information about the end of a lane,
and on the other hand, it provides a strong cue
for a junction.

Please note that a hypothesis is not ultimately re-
jected at this stage of processing. A reliable decision
if a lane segment belongs to a road or not is only
possible when considering additional features, e.g.,
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Figure 27: Extracted orthogonal lines at lane ends

the connectivity of different lane segments and the
global network topology. As mentioned, the results
presented above should be regarded as intermediate
steps of a more complex strategy. Further implemen-
tations are to come.

6 CONCLUSIONS

The proposed approach for rural areas is suited for
images with a resolution of 0.2 to 0.5 m. However, the
results are not 100% reliable and complete. Hence, in
operational use, a human operator would be needed
to edit the results, i.e., to delete wrongly extracted
roads and to insert missing parts. Nevertheless, the
approach shows that good results can already be
achieved based on grouping algorithms. By means
of global grouping criteria, the knowledge about the
topological properties of roads is incorporated, and
we are able to overcome some deficiencies of purely
local grouping. We showed that a noticeable im-
provement concerning the connectivity of the result-
ing road network is possible with an integration of glo-
bal grouping criteria in the last step. A full integration
of local and global grouping should be even better,
at least theoretically. A problem is that the new con-
nections are not verified with the image data. This
is the main reason for the loss of geometric accu-
racy after global grouping. Furthermore, it seems that
the results could be improved by using a more de-
tailed modeling of junctions, e.g., as it is proposed
in (de Gunst and Vosselman, 1997, Boichis et al.,
1998).

For road extraction in urban areas markings are
the most important features. DEM information has
proven to be very useful to restrict the search space
for the extraction of markings. Compared with the
approach for rural areas, the extraction uses more
knowledge about substructure of roads (markings,
lanes) and relations between vehicles and lanes. The
preliminary results of this approach for road extrac-
tion in urban areas are encouraging for our future
work on this topic.

What is missing in our road extraction scheme is the
link between urban (in our example: downtown) and

rural areas. The roads extracted in rural or urban ar-
eas could be used as starting points for road hypothe-
ses in suburban areas. However, the problem in sub-
urban areas is that it is not easy to decide which parts
of roads and which image features one should focus
on. A consequence would be to employ a suitably ex-
tended road and context model and to employ a more
flexible extraction strategy.
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