
- 1 -

The Halcon Vision System: An Example for Flexible Software Architecture
Wolfgang Eckstein, Carsten Steger

MVTec Software GmbH
Orleansstr. 34, D-81667 München, Germany

{eckstein|stegerc}@mvtec.com

This paper presents a software architecture that is capable of easy extension and maintenance and enables the user to
develop applications rapidly and in a flexible manner. This is achieved by using an object-oriented design, both for the
data structures and the operators which process this data. The granularity of the operators is chosen such that they easily
can be combined to solve various kinds of vision problems but on the other hand have an appropriate level of abstraction
so that the user does not have to worry about low level vision. The data structures are designed such that they are easy to
use but allow a high performance implementation. Based on these operators and data structures an interactive tool for rapid
program development is realized. It helps the user in selecting appropriate operators in many ways. For example, the
system provides context sensitive selection of possible alternative operators as well as suitable successors and required
predecessors. For the task of choosing appropriate parameters several alternatives exist. For example, the system provides
default values as well as lists of useful values for all parameters of each operator. To achieve this, a knowledge base
containing facts about the operators and their parameters is used.

1 Introduction
Many computer vision problems can be solved by using
a library of image processing algorithms in combination
with simple control structures [1-5]. Examples for this
class of problems are chip inspection, counting and
measuring objects, and quality assessment. Many
industrial vision tasks fall into this category of programs.
In this domain it is essential that new applications can be
developed in the shortest possible time. Also, for
complex applications like aerial image interpretation or
active vision, rapid prototyping is a very convenient
option as a first step towards the solution. This motivates
us to propose an integrated programming environment
that fulfills the needs for state of the art program
development. This environment is based on the
HALCON image processing library which implements
the operators in combination with a knowledge base
containing various informations about the operators.
Based on the library an interactive tool for program
development called HDevelop is presented which makes
use of this knowledge to help the user to rapidly
implement a broad range of vision tasks.

2 Overview over the HALCON
System

In this section we will give a brief overview of the
HALCON image processing system that describes the
structure of the operators.

2.1 System Architecture
The HALCON system is a toolbox that can be used to
solve typical image analysis tasks in a problem-oriented
manner in all levels of processing, ranging from image
preprocessing to the final interpretation. Its main focus is
the analysis of 2-dimensional images. It consists of a
library containing roughly 800 image processing
operators in the areas of preprocessing, segmentation,

morphology, feature extraction, classification,
visualization, etc., and a knowledge base that contains a
high level description of each operator (see Section 2.2).

The operators are implemented in C for efficiency
reasons, and have a well defined interface that takes care
of correct parameter passing from the host language to
the core library. Two types of parameters can be
distinguished: iconic and numerical data. They can be
further divided into input and output parameters, thus
yielding four parameter classes. The library also serves
as a database that keeps track of the iconic parameters
(objects). This database is object-oriented in the sense
that it presents the user with an opaque representation of
the iconic objects, giving access to the actual data only
through a predefined interface. The user neither has to
deal with implementation details nor with data
management. The image analysis operators work
completely functionally, i.e., the output objects and
parameters are calculated without side effects to the
input objects and parameters. The database is kept in
main memory to facilitate efficient access to the objects'
data. Currently, the system supports a number of
different object types:

• Images are a (sub-)set of pixels of a rectangular
area. They can be interpreted as a matrix with a
corresponding region that describes where the pixel
values are defined. This region of interest is also
used to improve the execution time of filters and
segmentation procedures. Images may be of various
types, including byte, short, long, float, and
complex.

• Regions are arbitrary subsets of the discrete 2-
dimensional space. They are not restricted to the
domain of an image. This is achieved by
implementing them using run length encoding. A



- 2 -

great advantage gained by this is that all
morphological operations can be implemented very
efficiently with no artifacts at the image borders.

• Contours are a collection of points that are obtained
by accumulating the output of a segmentation, e.g.,
an edge detector, into a sequence of connected
points. They can have sub-pixel accuracy.

All of these objects can be accumulated into sets of
objects of one type. For example, the result of a
segmentation operation is typically a set of regions,
while the output of a line finder is normally a set of
contours.

For numerical parameters the HALCON library uses
tuples of integers, floats, and strings. Each member of a
tuple can have one of these types independently of the
other members of the tuple.

2.2 The Operator Knowledge Base
An integral part of the HALCON system is the operator
database. The existing database describes each of the
operators. Its size at present is roughly 4.5MB.

All facts about an operator are collected in one operator
description. It is used for two basic tasks. The first basic
task is the automatic generation of interfaces between
the C library and several host languages. This means that
the library can be used in very different systems. In
addition, it is always state-of-the-art and can be enlarged
at will.

The second basic task is the provision of knowledge
about the use of the operators. This knowledge is
available at system runtime and callable by the host
language. In the phase of program development this
means while working with an interactive development
tool or environment the focus of attention lies on
supporting the developer in her search for promising
operator sequences and suitable parameter values.

3 Concepts for Faciliating Rapid
Program Development

In this section the concepts that are necessary to fulfill
rapid prototyping will be presented.

3.1 Rapid prototyping and reduction of
programming time

In order to reduce the amount of time that is spent to
compose a program, the effort to edit it has to be
minimized. There are a number of means by which this
can be achieved. First of all, the user must be able to
select the operator he wants to use with minimal use of

the keyboard. Therefore, the system should have menus
which present the operators in a structured manner to the
user. This means that operators have to be grouped into
meaningful chapters and sections. Of course, every user
has a different notion of meaningful chapters. Therefore,
the system should allow different structuring criteria.
Once the user has acquired some knowledge about the
system and knows the names of the operators that are
most useful to him, it is often more convenient for him
to enter the name of the operator rather than to select it
from the menu.

Another concept to reduce the programming time is that
the system should provide reasonable names for input
and output variables by default and provide the user with
a list of all variable names that have been used so far, so
he can quickly enter variable names into a parameter
field. Furthermore, the system has to provide useful
default values for each operator. Additionally, the
system should automatically lay out the program text in
a manner in which the structure of the program is readily
apparent.

One last important point is that the system and the
language it uses should be self contained and have
minimal overhead.

3.2 Support in all aspects of
programming

To facilitate rapid program development, the user should
receive maximum support and help by the system. This
means that the system has to provide useful suggestions
for the operators that can be used. It must provide
suggestions for possible preceding and succeding
operations. For example, if the user wants to apply a
dynamic threshold operation to an image, the system
should list some smoothing operations, like a mean or a
Gaussian mean, as a predecessor. Also, the system has to
suggest possible alternatives for the currently selected
operator if the user is not satisfied with the results it
yields.

Once the user has selected an appropriate operator, the
system should display (upon request) a list of useful
values for each parameter. This serves two purposes. If
the user has little knowledge about the operator, he can
get an impression which values might be appropriate and
can try values contained in the list as a starting point for
optimal parameter selection. Furthermore, if the values
that the system suggests are well chosen, the user will
rarely have to try more than two or three values from the
list before finding the best value for his application. This
further facilitates rapid program development.



- 3 -

3.3 Minimization of programming errors
and debugging tools

In order to minimize programming errors, two aspects
are of importance. First of all, the operators should be
selectable by graphical elements like menus or lists. This
prohibits the user from selecting operators that do not
exist. Furthermore, the parameters that the user has to
enter must be presented in a structured manner. This
means, for example, that each parameter should have its
own data entry field and that variables and values can be
selected and placed into each field through the use of
graphical elements, like menus. The system then has to
take care of syntactical elements like parentheses,
spaces, and commas for the presentation of the program.
This prohibits the user from forgetting parentheses or
inadvertedly deleting a comma while editing.

To help the user to detect programming errors as quickly
as possible, there has to be a direct link between the
editing of the program and its execution. This means that
once the user has fully parameterized an operator and
finished editing, the system should immediately execute
the operator and display the results of the computation.

Furthermore, in order to debug complex programs, the
system must provide most of the capabilities of a good
symbolic debugging tool. This means that the user must
be able to set the program counter to any position he
desires. Also, there has to be an execution mode in
which the user steps through the program in a single step
manner and a mode in which the program runs
continuously. The latter mode has to be able to handle
breakpoints, so the user can stop the program at certain
locations. In all cases, the user must be able to change
thecontents of variables and the program itself, even
while it is being executed.

3.4 Development of complex
applications and integration into
other tools

In order to enable the development of complex
applications, the language that is used must contain a
complete set of execution control commands, i.e., branch
constructs like if ... then ... else or loop constructs like
for ... endfor or while ... endwhile. However, the
completeness of the language used has to be taken into
account. Since the user might want to execute calls to

Figure 1: Main components of the HDevelop system



- 4 -

the underlying operating system or another library he is
accustomed to, the desired level of completeness is very
hard to achieve. Also, the user may want to integrate the
program he has developed into a larger application as a
subtask. Therefore the system should allow the user to
save the program he has developed in the programming
language of his choice.

4 Example Application
Figure 1 shows the general appearance of the system. In
this case HDevelop was used to develop a program that
detects roads in aerial images with a ground resolution
of 2m. In this resolution roads can be modeled as lines
that are brighter than their surroundings. However,
buildings should not be detected by the program. From
these considerations a program was developed that first
extracts objects that are higher than their surroundings
from a digital terrain model of the area. In the second
part of the program lines that are brighter than their
surroundings are extracted. The final result of the
process can be seen in the visualization window in
Figure 1.

The HDevelop system consists of four major windows:
the program and the operator window for program
development, a window for management of iconic and
numerical variables, and one or more windows for
visualization.

With the program and operator window, shown on the
top left of Figure 1, the user can edit the program code
in a textual description with the help of a graphical
editor. To enter a line of code, he can select operators
from the menu Operators or enter the operator name in a
text field. The menu, shown in Figure 2, is structured in
a chapter/section fashion to enable the user to select the
appropriate operator quickly. By using the menu, the
user is able to learn the use of the system quickly and
easily. Once the user has acquired some knowledge
about the system, and knows the names of the operators
that are most useful to him, it is often more convenient
for him to enter the name of the operator rather than to
select it from the menu. In order to minimize the number
of keystrokes, the system selects the appropriate
operator if the user enters a substring of the name. If
more than one operator name matches the name that the

Figure 2: Chapter structure of the HALCON operators menu



- 5 -

user provides, he is given a list of operators that match
and can select the appropriate one. Both input methods
help to minimize programming errors since they prohibit
the user from selecting operators that do not exist.

The Suggestions menu allows the user to look for other
operators that might be interesting for him in the current
context. It provides suggestions for possible preceding
and succeeding operations. For example, if the user
wants to apply a dynamic threshold operation to an
image, the system lists some smoothing operations, like
a mean or a Gaussian mean, as a predecessor. The
system also provides possible alternatives for the
currently selected operator if the user is not satisfied
with the results it yields. Finally, it lists pointers to other
operators that might be of interest for the user in the
selected context. Figure 3 displays an example from the
Suggestions menu. In this case the user is interested in
possible successor operators to the \verb|connection|
operator. These menus facilitate rapid prototyping since
the user can try different operators very quickly.

Once the user has selected an operator, the parameters
are presented to him in a structured manner in the
parameter editing area of the main window, in which
each parameter has its own data entry field. The layout
of this area is determined dynamically from the

knowledge about operators, including types, value lists,
assertions, ranges, and default values. Consequently, no
changes to the user interface have to be coded when a
new operator is added. The system provides reasonable
names for variables by default if possible. Furthermore,
each parameter has a button associated with it, so that
the user can bring up a list of variables used so far and
enter or replace the current variable name. Furthermore,
for most parameters list of useful values are added to the
the menu. These value lists serve two purposes. If the
user has little knowledge about the operator, he can get
an impression which values might be appropriate and
can try values contained in the list as a starting point for
optimal parameter selection. Furthermore, if the values
that the system suggests are well chosen, the user will
rarely have to try more than two or three values from the
list before finding the best value for his application.
Additionally, with this scheme the user rarely has to
enter data on the keyboard. Since the parameters are
presented in a manner in which the user does not have to
take care of the syntax of the language, programming
errors that result from missing parentheses and other
similar error sources are avoided. The system also takes
care of the layout of the program.

Once the user has developed a program, it can be
debugged through the use of the execution control

Figure 3: Suggestions menu for the connection operator



- 6 -

buttons. These provide single-step and continuous
execution until the user stops the program or a
breakpoint is reached. Breakpoints and the program
counter can be set in the area to the left of the program
code window. During program execution all results are
immediately visualized. Iconic data is displayed in the
graphics window and in symbolic form in the variable
window. Numerical data is only displayed in the variable
window.

Finally, if the user is satisfied with the results of his
program and needs a specialized application, e.g., a
fancy user interface or a program requiring calls to the
underlying operating system, he can output the program
in a programming language of his choice. At the
moment the system can produce Visual Basic and C++
code.

5 Conclusions
In this paper the requirements and concepts that allow
the rapid development of computer vision applications
have been presented. A tool HDevelop has been
developed that integrates most of these concepts into a
working rapid prototyping environment, and is currently
in use. One additional area of improvement that will
further speed up program development is the graphical
input of parameters and and real-time visualization of

results. For example, if the user can select the
parameters of a threshold operation using sliders and the
results are immediately displayed when the user moves
the slider, the time to find appropriate parameters for an
operator will be greatly reduced.

References
[1] Amerinex Artificial Intelligence, Inc. General

support tools for image understanding. Technical
report, Amerinex Artificial Intelligence, Inc.,
Amherst, MA, USA, 1992.

[2] Niels O. Kirkeby and Henrik I. Christensen. The
vision programmers workbench (VIPWOB). In
Christensen and Crowley [5], pages 195--224.

[3] Lars Olsson. Module network tool. In Christensen
and Crowley [5], pages 225--252.

[4] Michael Klupsch and Wolfgang Eckstein. Object-
oriented image processing in Smalltalk: Using
complex operator objects. In Nagib~C. Callaos,
editor, International Conference on Information
Systems Analysis and Synthesis — ISAS '96, pages
833--839, Orlando, FL, USA, 1996. International
Institute of Informatics and Systemics (IIIS).

[5] Henrik I. Christensen and James L. Crowley,
editors. Experimental Environments for Computer
Vision and Image Processing, Singapore, 1994.
World Scientific Publishing.


	Abstract
	1. Introduction
	2. Overview over the HALCON System
	2.1. System Architecture
	2.2. The Operator Knowledge Base

	3. Concepts for Faciliating Rapid Program Development
	3.1. Rapid prototyping and reduction of programming time
	3.2. Support in all aspects of programming
	3.3. Minimization of programming errors and debugging tools
	3.4. Development of complex applications and integration into other tools

	4. Example Application
	5. Conclusions
	References

