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Abstract

An approach to extract watersheds and watercourses, as
well as their corresponding valleys and hills, from images
with subpixel precision is proposed. The critical points
of the terrain are essential as the starting points for the
construction of these separatrices. They are extracted ef-
ficiently with subpixel precision using an approach based
on derivatives of Gaussian filters. The separatrices are ex-
tracted by integrating their defining differential equation.
Finally, the hills and valleys are constructed by an efficient
graph search algorithm. Examples show the quality of the
results that can be achieved with the proposed approach.

1 Introduction

Watersheds and watercourses are important geomorpho-
logical features, which play an important role in hydrolog-
ical GIS applications. Intuitively, watersheds can be re-
garded as the lines that separate the area where water drains
to different locations. The areas that are enclosed by the wa-
tersheds are precisely the regions where water drains to the
same place, and are conventionally called basins or valleys.
Likewise, watercourses can be regarded as the lines where
water accumulates when it drains on the terrain. If water
would only run on the surface, the watercourses would be
the location of the river beds.

Watersheds also play an important role for the segmen-
tation of images, because the gray value of an image can
be regarded as the height of the terrain, and many interest-
ing features, e.g., cell walls in microscopic images, can be
described by watersheds.

One of the major categories of approaches to extract wa-
tersheds are the ridge detectors, which were first proposed
in the early part of the 19th century (see [2, 8] for a histor-
ical overview). [1] gives a good overview over the existing
classes of ridge detectors. However, it is well known that
they do not model the way water runs downhill [2], and can
therefore not be used to extract watersheds.

Another theory was proposed in the second half of the
19th century by Maxwell, Jordan, and Cayley (see [4, 6]
and references therein). It is based on the observation that
for generic surfaces there is a unique slope line through
every non-critical point of the surface. Each slope line is
the solution of a first-order ordinary differential equation
(ODE). Loosely speaking, all slope lines converging at the
same maximum are said to form a hill, while all slope lines
converging at the same minimum comprise a valley. The
lines that separate the hills and valleys are called water-
courses and watersheds, respectively. An important aspect
of this definition is that these separatrices are given by spe-
cial slope lines emanating from saddle points, and running
to a maximum or minimum, respectively. An implementa-
tion roughly following this theory has been described in [7].
However, it suffers from some poor implementation choices
that lead to inaccurate results and some surprising cases, in
which, for example, slope lines can cross each other.

A different characterization is given in [8]. This defini-
tion basically replaces the gradient vector field in the above
ODE by its dual 1-form, to obtain another differential equa-
tion, which is inexact, i.e., does not have a general inte-
gral. To integrate the DE, an integrating divisor must be
found, which obeys a first-order partial differential equa-
tion (PDE) [8, 2]. The level crossings of the integrating sur-
face of the PDE are the slope lines. Among them, some are
singled out as singulary solutions, which contain the water-
sheds and watercourses. Unfortunately, this definition is al-
most impossible to implement as a computer algorithm. The
defining equation of the integrating divisor is a first-order
PDE, which could be solved by the method of characteris-
tic strips. However, no boundary conditions can be given.
Therefore, no true implementations of this theory have been
given, although some erroneously claim to be one [3].

A third way to extract watersheds from the image is to
use the fact that water will accumulate at the minima of the
landscape. This means that each minimum in the image
defines a valley or water catchment basin. Watersheds are
the boundaries between different basins. This can be imple-
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mented by flooding the landscape from the minima [11].
Since all of the approaches to extract watersheds return

the result only with pixel resolution, a subpixel accurate wa-
tershed and watercourse extraction algorithm is desirable.
This means that either the definition of Maxwell, Jordan,
and Cayley, or the definition of Rothe must be used. Since
the latter definition can be implemented only with great dif-
ficulties, if it can be implemented at all, only the first defi-
nition seems to be viable.

2 Theory

As mentioned above, the definition of watersheds and
watercourses given by Maxwell, Jordan, and Cayley is the
definition that is most suitable for an implementation as a
computer program. This section will describe the theory in
detail, so that its implementation can be easily understood.

The definition of watersheds and watercourses, collec-
tively called separatrices, regards the terrain as a surface
f(x), wherex ∈ R2. This means that overhanging walls
in mountains cannot be modeled, but since water falls down
vertically at such places, this poses no restrictions on the
approach. Each generic surface possesses isolated critical
points, i.e., points where the gradient∇f = 0 [4, 6]. These
are the maxima (peaks), minima (pits), and saddle points
(passes) of the terrain.

Every non-critical pointp of the terrain lies on exactly
one slope line. The pointp divides the corresponding slope
line into an ascending and a descending part. These two
parts of the slope line are the solutions of the ODE

ẋ(t) = ±∇f(x(t)) (1)

with the initial conditionx(0) = p. The ascending part of
the slope line corresponds to the positive gradient. Critical
points do not lie on any slope lines, but we can say that a
slope line reaches a critical pointc if

lim
t→∞x(t) = c . (2)

With this, we can define the terms “hill” and “valley” quite
intuitively. All points, from which the ascending slope line
reaches the same maximum, form thehill that corresponds
to the maximum, while all points, from which the descend-
ing slope line reaches the same minimum, form thevalley
that corresponds to the minimum. Furthermore, we can de-
fine that all points, from which the slope line reaches the
same minimum and maximum, form theslope districtof
the minimum and maximum. It follows that all hills are
disjunct and cover the planeR2, and likewise for valleys.
Therefore, there must be curves that separate the hills and
the valleys. We can define that curves that separate adjacent
valleys are calledridge lines, while curves that separate ad-
jacent hills are calledvalley lines. Note that the term ridge

line is defined differently from most ridge detectors. The
ridge lines are, as we will see below, very close to what
we would intuitively callwatersheds, i.e., lines that sepa-
rate regions where water drains to different locations, while
the valley lines are very close to what we would callwater-
courses, i.e., possible locations of rivers.

While the above definition of the ridge and valley lines is
quite intuitive, it cannot be used for an efficient implemen-
tation, since we would have to construct the slope lines for
every point of the image. However, the following observa-
tion will lead to an efficient algorithm, as we will see below.
In every saddle point, four special slope lines “emanate” in
the following sense: Every saddle point possesses two pre-
ferred directions, its directions of principal curvature, i.e.,
the directions in which the second directional derivative at
the critical point obtains its minimum and maximum value,
respectively. The principal directions are perpendicular to
each other. The corresponding principal curvatures are of
opposite sign, indicating an upward and downward curved
direction. Although no slope line leaves the saddle point,
since the gradient there vanishes, we can take an infinites-
imally small step in the four directions defined by the two
principal directions. This will lead to two ascending and
two descending slope lines. The ascending slope lines nec-
essarily reach a maximum or another saddle point, while the
descending slope lines reach a minimum or another saddle
point. The key observation is that the valley lines are ex-
actly the descending slope lines emanating from the saddle
points, while the ridge lines are exactly the ascending slope
lines emanating from the saddle points.

The above definitions lead to the fact that for generic sur-
faces, every maximum is surrounded by a “ring” of valley
lines, on which only minima and saddle points occur as crit-
ical points. Likewise, every minimum is surrounded by a
ring of ridge lines, on which only maxima and saddle points
occur as critical points.

If we regard valley and ridge lines together, it can be seen
that these lines partition the planeR2 completely into the
slope districts. The critical points, along with the ridge and
valley lines, from a graph that describes the borders of the
slope districts. Here, the vertices of the graph are the critical
points, while the edges are the ridge and valley lines.

It is interesting to note that all slope district boundaries
are equivalent to one of the four types of slope districts
shown in Figure 1 [4]. The equivalence relation is defined
by inserting an arbitrary number of saddle points into the
graph, where the slope district boundary makes a right an-
gle turn at each of the inserted saddle points. The slope
district type in the upper left part of Figure 1, where there
are two paths from a minimum to a maximum via two dif-
ferent saddle points, occurs most frequently for real data.
The configuration in the lower left corresponds to a crater,
whereas the configuration in the upper right corresponds to
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Figure 1. The four generic types of slope dis-
trict boundaries. Maxima are indicated by 4,
minima by 5, and saddle points by +. Edges
are drawn in the upward direction of the un-
derlying terrain.

an isolated mountain (imagine a crater that has been turned
upside-down). The final configuration has no good real-
world interpretation, and was argued to be unstable in [7].

Figure 1 gives a good example why not every ridge line
is a watershed and not every valley line is a watercourse.
Consider, for example, the ridge line that runs from the
saddle point to the maximum in the upper right configu-
ration. There, all water that falls onto this slope district ac-
cumulates at the minimum. Hence, the ridge line does not
separate two regions where water accumulates at different
places, and therefore it cannot be a watershed. The same
line of reasoning shows that the valley line in the lower
left configuration is not a watercourse, since water will run
down the crater walls more or less equally, and hence the
water does not really accumulate at a watercourse.

3 Extraction of Critical Points

Based on the above discussion, it is clear that the critical
points of the terrain play a crucial role for the extraction of
separatrices. If the saddle points of the terrain are known,
one can start constructing the four special slope lines that
emanate from each saddle point by integrating the ODE (1).
To know when to stop integrating, one has to know the min-
ima, maxima, and saddle points of the terrain.

Because the slope lines eventually reach the critical
points, the location of these points has to be known with
high accuracy in order to be able to stop the integration of
the slope lines at the right time and place. More impor-
tantly, the saddle points and their principal directions have
to be known with high accuracy to enable the starting of
the integration. These requirements rule out pixel-based ap-
proaches to the extraction of the critical points, because the
principal directions of the critical points cannot be deter-
mined accurately.

A method for the extraction of minima and maxima with
subpixel accuracy was presented in [10]. It can easily be
modified to extract saddle points as well. The method works
by constructing a second-order Taylor polynomial for every
image point. The necessary partial derivatives of the image
are obtained by convolving the image with the appropriate
partial derivatives of a Gaussian kernel [10, 9]. Smoothing
the input data is necessary to remove noise and plateaus. If
we denote the Hessian matrix, i.e., the matrix of the sec-
ond partial derivatives, of the Gaussian-smoothed terrain by
Hgf , and the gradient of the smoothed terrain by∇gf , we
can extract the critical points by solving the following linear
equation for every image pixel:

Hgf · x = −∇gf . (3)

To ensure that the critical point lies within the current pixel,
x ∈ [− 1

2 , 1
2 ] × [− 1

2 , 1
2 ] must be required.

The above procedure returns the critical points with sub-
pixel resolution. In addition, a classification into maxima,
minima, and saddle points, as well as the principal direc-
tions at the critical points are needed. Both can be obtained
from the Hessian matrixHgf . The eigenvaluesλ1 andλ2

(λ1 < λ2) of the Hessian give the required classification:
A critical point is a maximum ifλ1, λ2 < 0, a minimum
if λ1, λ2 > 0, and a saddle point ifλ1 < 0 andλ2 > 0.
Note that because we assume the surfacef to be generic,
the caseλ1,2 = 0 occurs with probability zero. Addition-
ally, the eigenvectorse1 ande2 corresponding to the two
eigenvalues give the two principal directions at each saddle
point, and hence the four starting directions±e1,2 for the
integration of the separatrices. Figure 2 shows the result
of extracting the critical points from a digital terrain model
(DTM) with 20 m pixel size of the Vernagtferner glacier.
The critical points are visualized by crosses which point in
their principal directions. One important point to note is that
because the image is mirrored at the borders during smooth-
ing and subsequent processing, critical points are created in
the correct places for further processing at the border of the
DTM automatically.

While the locations of the extracted critical points are
quite good, they can be refined even further. The reason
for this is that the critical points areextrapolatedfrom the
Taylor polynomial at each pixel’s center. Because terms of
order 3 and higher are neglected, the locations can contain
extrapolation errors of up to about 1/10 of a pixel, especially
of the critical point lies near the pixel’s borders. Further-
more, because of this the Taylor polynomials do not agree
at the pixel’s boundaries, and can therefore not be used for
interpolation purposes. However, the construction of the
separatrices discussed in the next section requires a consis-
tently interpolated surface. By consistent we mean that the
gradient∇gf = (gx, gy) of the ODE (1) must fulfill the
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Figure 2. Critical points extracted from a DTM of the Vernagtferner glacier. The left image shows
the DTM visualized by gray levels, while the right image shows the DTM shaded from the north
east. Maxima are displayed as black crosses in the left image and as dashed crosses in the right
image, respectively, minima as white and dotted crosses, and saddle points as medium gray and
solid crosses. The axes of the crosses point to their principal directions.

Figure 3. Comparison between the extrap-
olated and refined locations of the critical
points in the vicinity of the peak in the north
west corner of Figure 2.

integrability condition

∂gx

∂y
=

∂gy

∂x
. (4)

Note that this implies that the terrain must have continuous
derivatives up to second order. A bicubical interpolation
of the terrain fulfills all these requirements, and hence is
used from now on to interpolate the partial derivatives of
the DTM or image at subpixel positions.

With this, the extrapolated critical points can be regarded
as initial guesses for a root finding algorithm that calcu-
lates the critical points (recall that their location is given
by ∇gf = 0). A Newton-Raphson-type root finding algo-
rithm [5] will locate the critical points with sufficient ac-
curacy with few iterations. Of course, the principal direc-
tions have to be recalculated at the refined locations of the
critical points. Figure 3 shows a comparison between the
extrapolated and refined locations of the critical points. As
can be seen, the location changes are relatively minor, but
the changed principal directions indicate that the refinement
step is important to get good results.

4 Extraction of Separatrices

With the critical points extracted, the construction of the
separatrices can be done in a straightforward manner by in-
tegrating their defining ODE 1, i.e.,̇x(t) = ∇f(x(t)) for
ridge lines andẋ(t) = −∇f(x(t)) for valley lines. The
initial condition x(0) = p needed to start the integration
can be obtained by taking a small step away from the sad-
dle points in their principal direction, i.e.,±e1 (λ1 < 0) for
valley lines and±e2 (λ2 > 0) for ridge lines, as discussed
in Section 2. In the current implementation, this step is
1/4 pixel. Of course, to get a topologically complete result,
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Figure 4. Separatrices extracted from the
DTM in Figure 2.

the saddle point itself has to be added to each separatrix as
well. The integration of the ODE stops if the separatrix gets
close enough to another critical point (recall that it cannot
get to the critical point itself). To perform the integration,
a Runge-Kutta algorithm with adaptive step size control is
both robust and efficient enough [5].

With this procedure, all separatrices in the interior of the
DTM or image are extracted correctly. At the border of the
DTM, some special treatment is necessary since it might
happen that a maximum and a minimum are adjacent on the
border. In such cases, no separatrix will be constructed be-
tween the two critical points. However, to ensure a complete
segmentation of the DTM into regions, it is essential that in
such cases a separatrix is constructed artificially. Hence,
the algorithm examines all adjacent pairs of critical points
and inserts a separatrix on the border wherever necessary to
ensure that there is a closed ring of ridge and valley lines
around the image border.

The results of applying the algorithm described above to
the DTM of Figure 2 can be seen in Figure 4, which dis-
plays all the extracted separatrices. Figure 5 displays the
extracted separatrices on a 3d visualization of the DTM to
give an impression of the excellent subpixel accuracy of the
algorithm. The keen observer will note that all of the slope
districts are of the two types in the upper row of Figure 1,
where the right type occurs three times. One surprising fact
is that in the south west corner two separatrices approach
each other very closely, but then separate again, before con-

Figure 5. 3d visualization of the separatrices
extracted from the DTM in Figure 2. Water-
sheds are displayed in white. The view is
along the ridge from the east to south of the
center of the image.

verging in the main valley in the south east. This result can
only be explained by the fact that polynomial interpolation
sometimes introduces oscillations, which might lead to a
“phantom ridge” between the two “valleys” in this case.

5 Extraction of Hills and Valleys

The separatrices are often useful by themselves. How-
ever, most of the times the regions defined by the separatri-
ces, i.e., the hills, valleys, and, to a limited extent, the slope
districts, are the objects that need to be returned by the algo-
rithm. Especially the valleys are of great importance, since
their borders are exactly the watersheds of the processed
DTM or image.

As discussed in Section 2, the critical points form the
vertices of a graph, whose edges are the separatrices. From
this graph, we can extract the slope districts by extracting
the regions of the plane that are enclosed by the separatrices.
Conceptually, the regions are given by “minimal” cycles in
the graph, i.e., cycles that do not contain edges, which in-
tersect the region enclosed by the cycle such that several
smaller regions could be produced. The same can be said
for hills and valleys. Here, we only need to insert a subset
of the separatrices into the graph. For valleys, the ridge lines
and the corresponding vertices need to be inserted, while for
hills the valley lines are required.
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Figure 6. Algorithm to construct the regions
enclosed by the edges of a graph. The solid
lines are the edges of the graph. The num-
bers on the edges indicate the counterclock-
wise sorting order of the edges in each ver-
tex. The dashed lines are the edges that en-
close the region in counterclockwise direc-
tion. The numbers on the dashed lines, along
with the dotted arrows indicate the order in
which the region is constructed.

Thus, in order to extract the regions defined by the sep-
aratrices, a bidirectional graph, i.e., a graph that for every
separatrix contains the edge from the saddle point to the
critical point it reaches as well as the corresponding back
edge, needs to be constructed. To see how the regions en-
closed by the graph can be computed, assume for the mo-
ment that all edges, i.e., separatrices, are straight line seg-
ments. Then, we could easily sort the edges of the graph in
each vertex according to the edge direction, i.e., we could
order the edges counterclockwise (see Figure 6).

With this, the algorithm to construct the regions is rela-
tively straightforward. To construct a region, take the first
unprocessed edge of the graph, and look up the vertex to
which it leads, i.e., the tip of the edge. From the edges that
leave the vertex, select the one that precedes the incoming
edge in the ordering. Mark the incoming as processed, and
continue in the same manner until the edge selected at the
current vertex is already marked as processed, i.e., until you
have formed a cycle. It is easy to see that, by construction,
the cycles computed by this algorithm are minimal in the
above sense. Obviously, all regions have been constructed
if there are no more unprocessed edges.

As can be seen, the crucial part of the algorithm is
the counterclockwise ordering of the edges in each vertex.
While this is easy to define for straight lines, unfortunately
for separatrices this is a rather complicated problem since
often several separatrices reach a critical point in the same
direction, i.e., are tangential to each other, as shown in Fig-
ure 7. Therefore, the ordering cannot be determined locally

Figure 7. Often the separatrices reach a criti-
cal point tangential to each other. Therefore,
the ordering of the separatrices in the ver-
tices is non-trivial.

at each vertex, e.g., based on angles. An angle-based or-
dering can only be used for separatrices that enter the crit-
ical point non-tangentially. For tangential separatrices, the
ordering must be done based on the criterion that a vertex
“eventually lies to the left” of another vertex. Based on Fig-
ure 7, the meaning of this criterion is fairly obvious for a
human. In the computer implementation, this criterion can
be defined based on the directions of the separatrices at the
point at which they move apart by a sufficient distance.

Figure 8 shows the valleys and hills that are extracted
from the DTM in Figure 2 with the proposed approach. As
can be seen, all regions have been computed correctly. Note
that the ridge lines that are no watersheds and the valley
lines that are no watercourses have been removed from the
result. This was done by successively removing the adja-
cent edge pairs on the cycles that correspond to the same
separatrices.

Another example of the results obtainable with the pro-
posed approach is given in Figure 9. Here, watersheds were
extracted from an image of human skin cells. Note again
the accuracy and completeness of the segmentation.

6 Conclusions

This paper proposes an approach to extract watersheds
and watercourses from grid DTMs and digital images with
subpixel accuracy. The approach is based on the theory put
forward by Maxwell, Caley, and Jordan. For the first time,
a consistent and efficient implementation of this theory is
developed. It rests on the fact that the critical points of the
terrain, most importantly the saddle points, and their prin-
cipal directions can be found efficiently with subpixel ac-
curacy. The separatrices are then constructed with subpixel
accuracy by interpolating the terrain appropriately so that a
standard ODE integration algorithm can be used. Finally,
the hills, valleys, and slope districts are constructed by an
efficient graph search algorithm.

One of the consequences of the algorithm and of the mor-
phology of the earth is that often separatrices, especially
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Figure 8. Valleys and hills extracted from the DTM in Figure 2.

Figure 9. Watersheds extracted from an im-
age of human skin cells.

watercourses, join tangentially long before the correspond-
ing critical point is reached. This leads to elongated region
with line-like appendages of nearly zero area. Although this
results from the definitions of the separatrices, it is not in-
tuitive from a user’s standpoint. Therefore, it might be use-
ful to insert “confluence points” at the appropriate locations
into the graph. However, this is a quite complicated prob-
lem since it has to be done in a topologically sound manner.
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