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ABSTRACT

An extensive analysis of the quality of the extraction results of a subpixel line detector and a subpixel edge detector is
carried out. The localization quality of line and edge points in the presence of noise is analyzed analytically, and new
formulas describing this relationship are derived. Tests on synthetic noisy images show the formulas to hold very well in
practice. Experiments on real images show that subpixel accuracy better than one tenth of a pixel is possible in typical
industrial inspection or close-range photogrammetry tasks.

1 INTRODUCTION

The analysis of the performance characteristics of a fea-
ture extraction algorithm is very important (Förstner, 1996).
First, it makes an algorithm comparable to other algorithms,
thus helping users in selecting the appropriate method for
the task they have to solve. Second, it helps to identify
breakdown points of the algorithm, i.e., areas where the al-
gorithm cannot be used because some of the assumptions
it makes are violated. Therefore, in this paper an attempt is
made to characterize the performance of the subpixel line
and edge detection algorithms proposed in (Steger, 1997,
Steger, 1998a, Steger, 1998b). The study is mainly con-
cerned with the subpixel precision and accuracy of the ex-
tracted line and edge positions and line widths because of
their importance for many applications, especially indus-
trial inspection and close-range photogrammetry. Follow-
ing (Förstner, 1996), for the purpose of this paper precision
refers to the repeatability of the extraction results, i.e., their
variance, and accuracy refers to their absolute errors, in-
cluding possible bias.

2 SUBPIXEL LINE AND EDGE DETECTION
ALGORITHMS

The line detector to be analyzed is discussed in detail in
(Steger, 1997, Steger, 1998a, Steger, 1998b). Therefore,
only a brief overview is given here. The algorithm models
lines as curves s(t) that exhibit a characteristic 1D line pro-
file in the direction perpendicular to the line. The most rele-
vant type of line profile for applications is the asymmetrical
bar-shaped profile given by

fa(x) =

{
0, x < −w
1, |x| ≤ w
a, x > w ,

(1)

where w is half the line width and a ∈ [0, 1] is the asymme-
try. General lines of contrast h can be obtained by consid-
ering a scaled asymmetrical profile.

In 1D, line positions can be extracted by convolving fa(x)
with the derivatives of a Gaussian smoothing kernel gσ(x)
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Figure 1: Location of an asymmetrical line and its corre-
sponding edges with width w = 1, σ = 1, and a ∈ [0, 1].

of width σ. This leads to a scale-space description of the
model line profile:

ra(x, σ, w, a) = φσ(x + w) + (a − 1)φσ(x − w) (2)

r′a(x, σ, w, a) = gσ(x + w) + (a − 1)gσ(x − w) (3)

r′′a(x, σ, w, a) = g′
σ(x + w) + (a − 1)g′

σ(x − w) . (4)

Line points are given by the points where r′a(x, σ, w, a) = 0.
Salient lines are selected based on the magnitude of the
second derivative r′′a(x, σ, w, a). For the extraction of the
line width, the two edges to the left and right of the line
position need to be extracted. They are given by the points
where r′′a(x, σ, w, s) = 0 and r′′′a (x, σ, w, a)r′a(x, σ, w, a) <
0. It can be shown that Gaussian smoothing necessarily
leads to a bias of the extracted line positions if a 6= 0. The
biased line position is given by

l = − σ2

2w
ln(1 − a) . (5)

Similarly, the edge position will generally be biased. An ex-
ample of this behavior for w = 1, σ = 1, and a ∈ [0, 1] is
shown in Figure 1. It can be seen that as a gets larger the
line and edge positions are pushed to the weak side, i.e.,
the side that possesses the smaller edge gradient. Further-
more, the line width is extracted too large for all a.

In (Steger, 1997, Steger, 1998a, Steger, 1998b) it is shown
that the bias of the line position and widths can be predicted
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(a) Extracted lines (b) Extracted edges

Figure 2: Lines and their width extracted in an aerial im-
age (a). Edges extracted in an aerial image (b).

analytically. The true values of the line width and asymme-
try are mapped to the line width and gradient ratio, which
are extractable from the image. Since this map is invertible,
the bias can be removed by plugging the extracted features
into the inverted bias prediction.

In 2D, lines are modeled as curves s(t) that exhibit the char-
acteristic profile fa in the direction perpendicular to the line,
i.e., perpendicular to s′(t) = n(t). This means that the first
directional derivative in the direction n(t) must vanish, while
the second directional derivative should be of large abso-
lute value. The necessary 1D zero crossing is obtained with
subpixel accuracy by extrapolating it from a local second-
order Taylor polynomial. The direction n(t) is obtained from
the eigenvector corresponding to the largest eigenvalue of
the Hessian matrix of the image convolved with a Gaussian.
To detect the width of the line, for each line point the clos-
est points to the left and right of the line point, i.e., along
−n and n, where the absolute value of the gradient takes
on its maximum value, are determined. This is done by
regarding the edges of the line as lines in the gradient im-
age, and using the same techniques as mentioned above
to achieve subpixel accuracy. The extracted line width and
gradient ratio are plugged into the inverted bias function to
achieve unbiased extraction results. The unbiasedness of
the extracted line position, width, contrast, asymmetry, and
orientation was established for noise-free synthetic images
in (Steger, 1998b). Figure 2(a) shows an example of the
lines extracted with this approach. Note that the lines are
unbiased in the entire image, especially in the highly asym-
metrical part in the center of the road.

The above mentioned approach to regard edges as lines
in the gradient image leads quite naturally to a subpixel
precise edge detector (Steger, 1998b). An example of the
edges extracted with this approach is shown in Figure 2(b).

3 QUALITY OF THE LOCALIZATION OF LINE AND
EDGE POINTS

For real images, noise, i.e., random fluctuations of the im-
age intensity, plays a significant role for the precision and
accuracy of the extracted features. Noise enters the image
in different stages of the imaging process, e.g., through the
photon flux on the sensor or the quantization of the image
intensity to a finite number of gray levels. The noise n(x)
can be modeled as a random process in one dimension and
as a random field in higher dimensions. Thus, the observed
version of the image is given by

i(x, y) = f(x, y) + n(x, y) . (6)

The noise component n is assumed to be wide-sense sta-
tionary, statistically independent of the image content f ,
and white, i.e., its expected value E(n) = 0 and its auto-
correlation R(τ ) = σ2

nδ(τ ), where σ2
n is the variance of the

noise (Papoulis, 1991).

Obviously, if noise is added to an image the extracted line or
edge positions, and in general any extraction results, such
as the line widths, will not be the correct values that would
have been obtained from the uncorrupted version of the im-
age. Therefore, one of the major performance criteria of an
algorithm is the dependence of the extracted features on
the input noise level. Put into different terms, what needs to
be determined is how the variance of the line position and
width and the variance of the edge position varies as the
variance of the noise in the image varies. Ideally, if this de-
pendency has been determined the algorithm could return
an estimate of the variance of the respective feature, e.g.,
the line position, if given an estimate of the variance of the
image noise. The variance σn of the image noise can, for
example, be determined by automatic procedures from an
input image (Förstner, 1991). Such a variance estimate can
serve as an aid for self-diagnosis (Förstner, 1996), e.g., to
determine if certain requirements of the output data can be
met. For example, if an application requires one tenth of a
pixel accuracy in the line or edge position, and the returned
standard deviation of the line position is larger than some
fraction of this amount, an algorithm can alert the user to
the fact that the lines cannot be extracted with the required
precision. The user could then try to fix the problem.

3.1 Previous Work on Localization Quality

Over the years, several attempts have been made to char-
acterize the quality of the extracted feature positions. Most
of them were made for edge detectors. Often, these quality
measures are made in connection with deriving an “opti-
mal” operator with respect to several criteria, one of which
often is a term that tries to measure the goodness of edge
locations. One of the earliest approaches to this problem
is introduced in (Canny, 1986), where an optimal 1D edge
detector with respect to three criteria is derived: good de-
tection, i.e., the algorithm should have a high probability of
extracting true edge points, while having a low probability
of extracting false edge points, good localization, i.e., the
extracted edge points should be as close as possible to the
true edge points, and finally having only a single response
to an edge. The optimal operator is described by a convo-
lution of the image with a kernel of finite width 2w. It is as-
sumed to yield a maximum response at the edge location,
i.e., the first derivative of the filter response at the edge is
zero. With this, the variance of the edge position is derived
in (Canny, 1986) as

E(x2
e) =

σ2
n

w∫
−w

f ′(x)2 dx


 w∫

−w

h′(−x)f ′(x) dx




2
. (7)

The above definition of the localization quality measure was
later criticized for being incorrect (Tagare and deFigueiredo,
1990). The major objection put forth there is that there is a
conceptual error in the derivation of (7). For this reason, an
attempt is made in (Koplowitz and Greco, 1994) to derive
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the true variance of the edge position. The authors note
that in addition to the problems mentioned in (Tagare and
deFigueiredo, 1990), i.e., the wrong derivation of E(r′(x)2),
the Taylor expansion necessary to derive the edge location
should be done as r′(xe) = r′n(0) + (r′′f (0) + r′′n(0))xe, in
contrast to the original formulation in (Canny, 1986). Hence,
xe ≈ −r′n(0)/(r′′f (0) + r′′n(0)). They then go on to derive
the probability density of xe and arrive at the result that it
is given by a sum of two Cauchy densities. Therefore, they
note, the variance of xe does not exist. Of course, in this
case the mean of xe also would not exist. What this ob-
viously erroneous result implies is that if even the tiniest
amount of noise is added to an image, the edge locations
would fluctuate wildly all over the image, which is, of course,
not supported by experimental evidence. If this were true,
edges could in effect not be extracted at all because their
positions would be meaningless.

A different approach is given in (Åström and Heyden, 1996),
where the imaging process is modeled in several steps.
First, the ideal continuous image is assumed to be blurred
by the imaging device with a Gaussian kernel with standard
deviation σb. Then, the image is sampled and noise with
standard deviation σn is added to the image. Finally, edge
extraction is done by smoothing the image with a Gaussian
kernel with standard deviation σe and calculating the gradi-
ent of the resulting image. The authors give the following
formula for the variance of an edge of height h, if the edge
extraction is performed in a direction forming an angle α
with the direction perpendicular to the edge:

E(x2
e) =

3σ2
n(σ2

b + σ2
e)

3

8h2σ6
e cos6 α

. (8)

Unfortunately, almost no details of the derivation of (8) are
given, and hence it is hard to judge whether (8) is correct.

3.2 Variance of the Zero Crossing of an Arbitrary Func-
tion

Because none of the above derivations of the variance of
the edge position are applicable to the problem of deter-
mining the variance of the line position and width, and be-
cause some of them are erroneous even for the problem
of determining the variance of the edge position, there is a
need for an, at least qualitatively, correct formula that also
is supported by experimental evidence. The algorithm of
determining the line position in the 1D continuous case can
be broken down into two steps: the input signal is first con-
volved with the derivative of a Gaussian kernel, and then
the zero crossings of the resulting response function r′(x)
are determined, where additionally r′′(x) < 0 is required.
For edges, the only change is that the zero crossings of the
second derivative are determined. Since convolution with
a Gaussian kernel is a linear operation, the response r(x)
of the line detection operator to the corrupted signal i(x) is
given by

r(x) = gσ(x) ∗ i(x) = gσ(x) ∗ f(x) + gσ(x) ∗ n(x)

= rf (x) + rn(x) (9)

and analogously for the corresponding derivatives. Thus,
the response of the line detection operator to a model line
profile f(x) corrupted by wide-sense stationary white noise
n(x) can be broken down into a deterministic part rf (x) and
a stochastic process rn(x). The deterministic part can, of
course, be determined analytically, e.g., by (2)–(4) for the

asymmetrical bar-shaped profile. Note that the determin-
istic part of the response has exactly one zero crossing of
r′(x) in [−∞,∞]. The random part of the response shifts
this zero crossing and may introduce additional zero cross-
ings of r′(x). In order to determine the localization quality
of the line detection algorithm, it is therefore useful to con-
sider the variance of the zero crossing of r′(x) closest to
the zero crossing of the deterministic part r′f (x) of the re-
sponse.

Since the noise n(x) is assumed to be wide-sense sta-
tionary and white, the statistics of the response of the line
detector to the noise can be calculated easily (Papoulis,
1991). Because the mean value E(n(x)) is assumed to
be zero, convolution of n(x) with an arbitrary derivative of
the Gaussian kernel is also a stationary stochastic process
with zero mean. Furthermore, the autocorrelation func-
tion Rr(τ ) of the noise smoothed with a Gaussian kernel
is given by (Papoulis, 1991)

Rr(τ ) = σ2
ng√2σ(τ ) , (10)

while the autocorrelation function of the noise convolved
with the first derivative of a Gaussian kernel is

Rr′(τ ) = −R′′
r (τ ) = −σ2

ng′′√
2σ(τ ) . (11)

Thus, the variances of the respective stochastic processes
are

σ2
r = Rr(0) =

σ2
n

2
√

πσ
(12)

σ2
r′ = Rr′(0) =

σ2
n

4
√

πσ3
. (13)

With this, the problem of determining the variance of the
line position can be transformed to the equivalent problem
of determining the variance of the zero crossing of an arbi-
trary function with exactly one zero crossing, e.g., (3), cor-
rupted by a the addition of a stationary stochastic process
with zero mean and a given autocorrelation function, e.g.,
(13). Without loss of generality, the zero crossing of the
function can be assumed to be at the origin.

Before an approximation of the variance of a zero crossing
with added noise will be derived, it is useful to look at this
problem in a purely geometrical manner to get an intuitive
notion of the dependency. Assume for the moment that the
uncorrupted signal is simply the linear function f(x) = hx,
and that the distribution of the noise n(x) is uniform in some
interval [−m, m] for all x. Then, conceptually one can think
of the corrupt signal i(x) to be contained entirely within a
“tube” of diameter dy = 2m around f(x), as shown in Fig-
ure 3. Therefore, the zero crossings must all lie in an in-
terval of diameter dx around 0. Obviously, dy/dx = h,
and therefore the width of this interval is proportional to
1/h = 1/f ′(0). Although the distribution of the zero cross-
ings within the interval is unknown, the variance of the zero
crossings can be expected to be proportional to 1/f ′(0)2.
Thus, it can be conjectured that for general functions the
variance of the zero crossings is proportional to σ2

n/f ′(0)2.

In order to prove this conjecture, a Taylor series expansion
of order one of (9) can be performed, where for the moment
it should be assumed that rf (x) and rn(x) are not obtained
by convolution with a Gaussian, but are an arbitrary func-
tion and noise with a given autocorrelation function, respec-
tively. Thus, r(x0) = 0 for some x0, and hence

r(x0) ≈ r(0) + r′(0)x0

= rf (0) + rn(0) + (r′f (0) + r′n(0))x0 . (14)
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Figure 3: If the noise n(x) is assumed to be uniformly dis-
tributed in [−m, m] for all x and f(x) = hx, the zero cross-
ings of i(x) = f(x) + n(x) must be contained in an interval
of width dx = dy/h.

By assumption, rf (0) = 0, and hence

x0 = − rn(0)

r′f (0) + r′n(0)
. (15)

The calculation of the variance of x0 from (15) is extremely
difficult. However, if one assumes that the variance σ2

r′ of
r′n(0) is small with respect to the first derivative of the signal
r′f (0), the term r′n(0) can be omitted from the denominator
of (15):

x0 ≈ −rn(0)

r′f (0)
. (16)

With this simplification it is a simple matter to calculate the
variance of x0. The denominator is a known deterministic
function, while the nominator is a stationary stochastic pro-
cess with known autocorrelation Rr(τ ), and therefore with
known variance σ2

r = Rr(0). Thus, the variance σ2
0 of the

location x0 of the zero crossing is given by

σ2
0 =

σ2
r

r′f (0)2
. (17)

This result has been verified for different 1D functions in
(Steger, 1998b). As predicted above, (17) gives a very ac-
curate prediction of the variance of the zero crossing for
high signal to noise ratios. If the standard deviation of the
noise is larger than approximately 40% of the amplitude of
the signal, i.e., for low signal to noise ratios, the term r′n(0)
neglected in (16) becomes important. In this case, the vari-
ance of the zero crossings is estimated too small by (17).
Thus, (17) in most cases gives a very accurate estimate of
the true variance of the zero crossings of a function cor-
rupted by noise.

3.3 Variance of Line and Edge Positions

With these preliminaries, the predicted variance of the line
and edge positions can be determined easily. Since the
edge model is much simpler than the line model it is con-
sidered first. To derive the variance of the edge locations in
the 2D case, without loss of generality it can be assumed
that the edge is straight and lies on the y-axis, since the in-
dependence of the unbiasedness of the edge and line po-
sitions on the orientation of the edge or line was shown
for synthetic noise-free images in (Steger, 1998b). There-
fore, the edge position is given by the zero crossings of the
model edge convolved with the second directional deriva-
tive along the x-axis of a Gaussian kernel. Thus, the edge
location is given by

rxx(x, y) = rf,xx(x, y) + rn,xx(x, y) = 0 . (18)

Mean edge position error
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Figure 4: Mean value of the edge location as a function of
the standard deviation σ of the Gaussian smoothing kernel
and the standard deviation σn of the input noise.

The 2D autocorrelation function Rrn,xx of rn,xx(x, y) is given
by (Papoulis, 1991)

Rrn,xx(τx, τy) = σ2
ng′′′′√

2σ(τx)g√2σ(τy) , (19)

where σ2
n is the variance of the noise in the original image.

Thus, the variance of the random noise field is

σ2
rn,xx

=
3σ2

n

16πσ6
, (20)

where σ is the standard deviation of the Gaussian smooth-
ing kernel. For the response of the filter to the model step
edge needed in (17), obviously

rf,xxx(x, y) = hg′′
σ(x) , (21)

where h is the contrast of the edge. Thus,

rf,xxx(0, 0)2 =
h2

2πσ6
. (22)

Therefore, the variance of the location of an edge in a 2D
image is given by

σ2
e =

σ2
rn,xx

rf,xxx(0, 0)2
=

3σ2
n

16πσ6

h2

2πσ6

=
3

8

σ2
n

h2
. (23)

This result is quite surprising since it signifies that the vari-
ance σ2

e of the edge locations is independent of the choice
of the smoothing parameter of the Gaussian kernel. This
counterintuitive result should be verified by experiments.
To do so, test images of size 32 × 32 were generated with
exactly one edge in the center of the image. Edges were
extracted with Gaussian derivatives of varying standard de-
viation σ. The input images were corrupted with Gaussian
noise of varying standard deviation σn. For each combi-
nation of σ and σn, 1000 experiments were performed, re-
sulting in roughly 30000 edge points from which the mean
value and variance of the edge positions were computed.
Figure 4 shows that the mean value of the edge positions
is unbiased. The maximum deviation of the edge positions
in this series of experiments is roughly one hundredth of a
pixel. More importantly, Figure 5(a) shows the calculated
variances of the edge positions. As can be seen, the re-
sults do not depend on the degree of smoothing. To check
the quality of the edge position variance predicted by (23),
Figure 5(b) displays the ratio of the predicted and extracted
edge position variances. This ratio is a measure of the bias
of (23). As can be seen, it is very close to 1 for most combi-
nations of σ and σn. The maximum error occurs if σ and σn

are close to zero. Overall, (23) gives an excellent estimate
of the edge position variance.

In order to predict the variance of the line position in 2D
images if the bias removal, i.e., the width and position cor-
rection, is not applied, the same technique can be used. As

4



Variance of edge positions
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Figure 5: Variance of the edge location as a function of the
standard deviation σ of the Gaussian smoothing kernel and
the standard deviation σn of the input noise (a). Ratio of the
predicted and extracted edge position variances, i.e., bias
of the prediction.
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Figure 6: Predicted variance of the line location as a func-
tion of the standard deviation σ of the Gaussian smoothing
kernel for a line of width w = 1, contrast h = 100, and noise
of standard deviation σn = 10 (a), and as a function of the
line width w for σ = 1, h = 100, and σn = 10 (b).

above, without loss of generality the line can be assumed
to lie on the y-axis. Thus, the line position is given by the
zero crossings of the model line convolved with the first di-
rectional derivative along the x-axis of a Gaussian kernel.
Hence, the line location is given by

rx(x, y) = rf,x(x, y) + rn,x(x, y) = 0 . (24)

The 2D autocorrelation function Rrn,x of rn,x(x, y) is

Rrn,x(τx, τy) = −σ2
ng′′√

2σ(τx)g√2σ(τy) , (25)

and hence the variance of the random noise field is

σ2
rn,x

=
σ2

n

8πσ4
. (26)

Since the asymmetry of a line causes the line position to
shift, the denominator of (17) has to be evaluated at the
biased line position l given by (5). With this, the variance of
the position of a 2D line is given by

σ2
l =

σ2
rn,x

rf,xx(0, 0)2
=

σ2
n

8πσ4

1

h2r′′a (l, σ, w, a)2
, (27)

where r′′a (l, σ, w, a) is given by (4). Unfortunately, this ex-
pression cannot be simplified very much. Therefore, to get
an impression of the dependency of the line position vari-
ance on different parameters, Figure 6(a) shows the pre-
dicted variance as a function of the standard deviation σ
of the Gaussian smoothing kernel, while Figure 6(b) shows
the predicted variance as a function of the line width w. The
line position variance is smallest for σ = w. Furthermore, if
σ is chosen much too small for a given line width w, the line
position variance increases rapidly.

Again, it has to be checked whether (27) holds for synthetic
test images. To do so, images of size 32 × 32 were gen-
erated with exactly one line lying in the center of the im-
age. To simulate the typical application case, the σ used
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Figure 7: Mean value of the line position as a function of
the total line width 2w and the standard deviation σn of the
input noise.

for smoothing was kept constant, while the total width 2w of
the line was varied in the interval [σ, 5σ] in subpixel incre-
ments. To obtain subpixel line widths in the image, it was
assumed that the sensor has a square aperture function,
i.e., integrates the incoming light intensity over the area of
each pixel. Therefore, the intensity of a pixel is proportional
to the area of the pixel covered by the line. Furthermore, the
asymmetry a of the line was varied in the interval [0, 0.75].
The input images were corrupted with Gaussian noise of
varying standard deviation σn. For each combination of
a, w, and σn, 1000 experiments were performed, resulting
in roughly 30000 edge points from which the mean value
and variance of the edge positions were computed. For
the experiments, lines of contrast h = 100 were extracted
with σ = 2. Figure 7 displays the mean line position er-
ror, i.e., the difference between the mean value of the line
positions extracted from the image and the true line posi-
tions for a = 0. As can be seen, for all integer line widths
the mean error is very close to zero. For non-integer line
widths the mean may lie up to 0.07 pixels from the true line
position. This effect is caused by extrapolation errors in
the subpixel extraction, and not by noise, as is discussed
in (Steger, 1998b). Thus, noise introduces no new bias of
the line positions, and therefore the line detector can be re-
garded as unbiased in the presence of noise. Figure 8(a)
shows the extracted line position variance. As can be seen,
the cross sections of the surface in this figure closely re-
semble the shape of the predicted variance displayed in
Figure 6(b). To check the validity of (27), Figure 8(b) shows
the ratio of the predicted and extracted line position vari-
ances. This measure of the bias of (27) is very close to 1
for almost all combinations of w and σn. For integer line
widths and small noise variances σ2

n, the extracted line po-
sition variance is larger than the predicted variance by up to
a factor of five because the line positions lie at the borders
of a pixel, where the extrapolation error is largest, and thus
one should expect the variance to be larger in these cases.
Similar results are also obtained for all other values of the
asymmetry a (Steger, 1998b). Overall, (27) gives an excel-
lent estimation of the line position variance for uncorrected
line extraction results.

Another very important performance measure for lines is
the variance of the extracted line widths. Since the total
line width in case the width correction is not applied is given
by the distance of the two edges of the line, in principle it
seems possible to describe the variance of the line width
using the approach introduced in this section. For exam-
ple, one could calculate the variances of the two edge po-
sitions, assume they are independent, and obtain the vari-
ance of the line width as the sum of the two edge position
variances. However, this has several problems. First, the
edge locations at which (17) must be evaluated can only
be calculated numerically. Therefore, no analytical result is
possible. Instead, the width variance would have to be tab-
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Figure 8: Variance of the line location as a function of the
total line width 2w and the standard deviation σn of the input
noise (a). Ratio of the predicted and extracted line position
variances, i.e., bias of the prediction (b).
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Figure 9: Mean (a) and variance (b) of the line width as a
function of the total line width 2w and the standard deviation
σn of the input noise.

ulated. More importantly, however, the edge positions, and
thus their variances, are not independent of one another,
as can be seen from the discussion in Section 2. Finally,
since the first edge point found on each side of the line is
used to calculate the width of the line without taking the
edge strength into account, it can be expected that for high
noise levels the edge position is much more affected by
noise than predicted by an analytical model because then
the first edge point found may be caused by noise instead
of the true edge point. For these reasons, the approach of
adding the variances of the two edge locations cannot re-
turn very good results, and this was verified on the synthetic
examples used above for the line position variance. From
this discussion it follows that a good analytical prediction of
the variance of the line width seems very hard to obtain.
Therefore, this topic has not been pursued further in this
paper. Instead, only the experimentally obtained means
and variances of the line width will be discussed. These
are shown for a = 0 in Figures 9(a) and (b), respectively.
As can be seen from Figure 9(a), the noise has almost no
influence on the extracted mean width error, i.e., the differ-
ence of the mean line width and the true line width. As is
to be expected from the discussion in Section 2, the mean
line width is biased. Figure 9(b) displays the experimentally
obtained variance σ2

w of the line widths. As can be seen,
it again increases proportionally to σ2

n. Furthermore, the
width variance is relatively small for small w. It increases
significantly only for large w. Again, similar results hold for
all asymmetries a.

The final important question is how the bias removal, i.e.,
the position and width correction, influences the variances
of the line position and width. Conceptually, the bias re-
moval is given by a function f : (v, r) 7→ (w, a), where v is
the width extracted from the image, r is the gradient ratio at
the two extracted edge points, w is the true line width, and
a is the true asymmetry. Thus, standard error propagation
schemes could be used to propagate the variances σ2

l and
σ2

w through f . If the covariance σl,w of the line position and
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Figure 10: Mean (a) and variance (b) of the line position
as a function of the total line width 2w and the standard
deviation σn of the input noise if the line width and position
correction is applied.

width were known, the covariance matrix Σu of the uncor-
rected could be calculated, and the covariance matrix Σc of
the corrected line position and width would simply be given
by (Haralick, 1996)

Σc = DfΣuDfT , (28)

where Df is the Jacobian matrix, i.e., the first derivative,
of f . Since σ2

w is only known empirically, since an explicit
estimation for σl,w is very hard to obtain, and since f can
only given in tabulated form, no attempt has been made to
derive an explicit formula for Σc. However, from the shape
of the bias inversion function displayed in (Steger, 1997,
Steger, 1998a, Steger, 1998b) it can be estimated that the
variances of the corrected line position and width will be
slightly larger than the uncorrected variances because the
partial derivatives of f are larger than 1 almost everywhere.
Figure 10 displays the mean and variance of the corrected
line position, while Figure 11 shows the mean and variance
of the corrected line width. From Figure 10(a) it can be
seen that the line position correction slightly increases the
mean error in areas of non-integer line width, i.e., in areas
where the line position does not lie close to the center of
a pixel. The maximum error increases from approximately
0.07 to 0.09 pixels. Furthermore, from Figure 11(a) it can
be seen that the corrected line widths are much closer to
the true line widths. The corrected line widths exhibit a
small bias only if the line width is very small compared
to σ. This fact was also observed for noiseless images in
(Steger, 1998b), and thus comes as no surprise. The vari-
ances of the line position are slightly decreased for small
w, while they are slightly increased for large w, as can be
seen when Figure 10(b) is compared to Figure 8(a). On
the other hand, the line width variance increases by a large
amount for small w, while the increase is small for large
w, as can be seen by comparing Figures 11(b) and 9(b).
Essentially, for small w the correction seems to trade bet-
ter line position variance for worse line width variance. As
above, qualitatively similar results hold for all other values
of the asymmetry a.

In summary, it can be concluded that the extracted line posi-
tions and widths are unbiased in the presence of noise, and
that the variances of the line positions and widths are very
small. Thus, subpixel accuracy can definitely be achieved
for noisy synthetic images, while it seems very likely that
this kind of accuracy may also be achievable in real images.

4 EXPERIMENTS ON REAL IMAGES

All the experiments so far have been done on synthetic test
images. Since for real imaging conditions various assump-
tions made in the test so far may not hold, it is important
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Figure 11: Mean (a) and variance (b) of the line width as a
function of the total line width 2w and the standard deviation
σn of the input noise if the line width and position correction
is applied.

(a) Line test set (b) Edge test set

Figure 12: Test sets used to check the subpixel accuracy of
the line and edge detection algorithms.

to perform experiments on real images. For example, the
camera used to acquire an image may not have an ideal
square aperture function or the framegrabber may not ex-
hibit a linear increase in gray values as the scene intensity
increases linearly.

4.1 Experimental Set-Up

In order to test the subpixel accuracy of the line detection
algorithms the following strategy was adopted: A test set
containing five lines of widths 2 mm–10 mm were printed on
a high-quality laser printer. The resulting print was mounted
on a table which can be shifted in one direction in 10 µm
increments. A camera with a 12 mm lens was mounted
perpendicular to the table at a distance of approximately
50 cm. A standard analog framegrabber was used to ac-
quire the images, since this is by far the most common
setup in industrial applications, where subpixel measure-
ments are extremely important. For edge detection, the
test set contained a single edge in the center of the print.
Figure 12 shows an image of the line and edge test sets.
Note that, although the lens used in this test is fairly good
for industrial inspection standards, there is nevertheless a
significant radial distortion. To test the subpixel accuracy,
each of the test sets was shifted by 1 mm in increments of
50µm, resulting in a shift of approximately 2 pixels in total
in the image. In each position of the measurement table,
20 images were taken. Thus, for each test set a total of
420 images were taken. The goal of the test is to deter-
mine the precision, i.e., the variance, of the line and edge
position measurements and the absolute position shift of
the line and edge positions in order to decide whether it is
possible to detect subpixel shifts of 50 µm or, equivalently,
approximately one tenth of a pixel.

Before this can be done, a few words on the architecture
of standard analog framegrabbers are necessary since the
technology used for them will influence the quality of the ac-
quired images. The main issue for framegrabbers is when

∆ t

Video signal

Pixel clock

HSync

Figure 13: Scheme to start the digitization of one line of a
video signal in current framegrabber architectures: Digitiza-
tion is started at the first rising flank of the unsynchronized
pixel clock after the horizontal sync signal has occurred, re-
sulting in an offset of ∆t.

to start digitizing a line of the video signal. To do this, most
analog framegrabbers have a clock chip running at several
times the pixel resolution, typically 4–10 times. They start
the digitization process on the first upward flank of the pixel
clock signal after the falling flank of the horizontal synchro-
nization (HSync) signal of the video signal has occurred, as
shown in Figure 13. Thus, for each line there is a random
offset of ∆t by which the line is shifted with respect to the
true HSync signal, resulting in a random shift by up to one
fourth to one tenth of a pixel, depending on the frequency
of the pixel clock. This seems to prevent subpixel accuracy
of better than one tenth of a pixel. Fortunately, however,
the random offset is independent for each line of the video
signal. Thus, one can expect to achieve better accuracy by
the smoothing done in the line or edge detector. In effect,
the random shifts in the digitized video signal can be mod-
eled as an additional noise source. From this discussion it
follows that the noise should be larger at the border of the
features of interest since the subpixel shifts result in larger
gray value variations there, while they have very little influ-
ence in regions of approximately constant gray value. Of
course, this problem does not occur if the framegrabber is
synchronized with the pixel clock of the camera or if a digital
camera is used.

In order to test the hypothesis that the random shifts in each
line of the video signal lead to increased noise at edge po-
sitions and to obtain the noise statistics of the test images,
the average of all 20 images within each shift can be calcu-
lated. Then, the individual images can be subtracted from
the mean image to obtain the noise distribution for that par-
ticular image. If the distributions over all 420 images are
averaged, a very good approximation of the noise distri-
bution is obtained. In (Steger, 1998b), it was shown that
the Gaussian distribution yields a very good approximation
of the noise distribution in both cases. The standard de-
viations of the noise were estimated as approximately 1.06
and 1.10, respectively, which is very small. Figure 14 shows
small parts of test images subtracted from their correspond-
ing mean image. As can be seen, the random shifts lead
to significantly increased noise at the edges of the line in
Figure 14(a) and at the edge in Figure 14(b). Therefore,
the line and edge locations may not be as accurate as one
would expect from the discussion in the previous section.

4.2 Subpixel Accuracy of Line Position and Width

To test the subpixel accuracy of the line detection algorithm,
only the center line of the test set of width 6 mm was used
since it turned out that the lens distortion was too large to
obtain meaningful results for the other four lines. Although
the center line was carefully aligned to be as vertical as
possible, even for this line the lens distortion influences the
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(a) Noise in a line image (b) Noise in an edge image

Figure 14: Examples of a test image subtracted from its
corresponding mean image for the line test set (a) and the
edge test set (b). The gray values in the images have been
scaled by a factor of 5 for clarity.
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Figure 15: Line position and variance as a function of the
shift of the line in mm.

extraction results, if statistics are calculated over the entire
line. Therefore, small windows of height 25 were used to
calculate the mean line position and width, and their corre-
sponding variances, because for these small windows the
lens distortion played only a small role. Since the means
and variances are calculated over 20 images, a total of 500
points are used to obtain the statistics. The experiments
showed that the resulting statistics are independent of the
position of the window. Because the center line of the test
images has a total width of approximately 12 pixels, the op-
timal σ = 6/

√
3 (Steger, 1998a) was used for the extraction.

Figure 15(a) shows the extracted line position as a function
of the shift of the line in mm. The resulting curve is almost
a perfect straight line. The precision of the line position,
i.e., its variance, is displayed in Figure 15(b), from which it
can be seen that the maximum variance is approximately
0.00115, i.e., the maximum standard deviation is roughly
one thirtieth of a pixel. From (27) the line position variance
can be estimated as 1.84·10−5 . Thus, the extracted position
variance is larger than the predicted variance by a factor
of 62.5 mainly due to the random line shifts induced by the
framegrabber, the still noticeable lens distortion in this small
part of the image, and the fact that the line is not perfectly
aligned with the vertical axis. However, since the position
variance is still very small it can be expected that the goal of
these experiments to detect subpixel shifts of one tenth of a
pixel can be achieved. This can easily be verified by testing
the hypothesis that the line positions corresponding to two
adjacent shifts are equal (Steger, 1998b). These tests have
been performed and the hypothesis that the line positions
are equal can be rejected with a probability greater than
99.9% for all line positions. Therefore, relative shifts of one
tenth of a pixel can definitively be detected in real images.

Another interesting point is the absolute position accuracy
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Figure 16: Absolute error of the line position calculated as
the difference of the extracted line positions and their re-
gression line as a function of the shift of the line in mm.

of the line. Since the camera was not calibrated, this is very
hard to obtain. If, however, it is assumed that the linear
shift of the object in the real world corresponds to a linear
shift of the line in the image, a straight line can be fitted
through the line positions extracted from the image. The
fitting should, of course, take the extracted position vari-
ances into account. The equation of the line obtained for
the experiment shown in Figure 15 is −2.07633x+317.364.
Therefore, it is likely that 1 mm in the real world corresponds
to 2.07633 pixels in this part of the image. With this, the
absolute position error of the line can be calculated as the
difference of the extracted line position and the regression
line. The results are shown in Figure 16. As can be seen,
the absolute position errors are less than one fortieth of a
pixel. The remaining errors show a systematic sinusoidal
component, which may be caused by the mapping of the
scene intensity to the gray values in the image performed
by the framegrabber. Since they are very small, the line
extraction algorithm yields very good absolute accuracy on
real images as well. Of course, to get meaningful positions
in real world coordinates the camera must be calibrated.

The final question for the line detection algorithm is the ac-
curacy of the extracted line widths. The extracted line width
and its variance are shown in Figure 17. The line width
seems to be centered around 12 pixels. If the above dis-
cussion on the correspondence between 1 mm to 2.07633
pixels is taken into account, this would imply that the width
of the 6 mm wide line is underestimated by approximately
3.7%. Therefore, the extracted line width is very close to the
true line width. Furthermore, it can be seen by the regres-
sion line superimposed in Figure 17(a), that the line width
increases as the shift increases. This can be attributed to
the fact that for increasing shifts the line moves towards the
center of the image where lens distortions are not as se-
vere. Finally, Figure 17(b) displays the line width variance
obtained from this experiment. As can be seen, the vari-
ance is less than 0.0005 almost everywhere, i.e., the stan-
dard deviation of the extracted line widths is less than one
fortieth of a pixel. Thus, line widths can be extracted with
very high subpixel accuracy.

4.3 Subpixel Accuracy of Edge Position

To conclude this section, the results of performing the same
kind of experiment for the subpixel edge detection algorithm
are discussed. The edges were extracted using Gaussian
derivatives with σ = 1. The resulting edge positions are
exhibited in Figure 18(a). As was the case for lines, the ex-
tracted edge positions lie very close to a perfect straight
line. Figure 18(b) displays the corresponding variances
of the edge positions. The maximum variance is approxi-
mately 0.0017. The variance predicted by (23) is 1.57·10−5 ,
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Figure 17: Line width and variance as a function of the shift
of the line in mm.
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Figure 18: Edge position and variance as a function of the
shift of the edge in mm.

i.e., the extracted variance is larger than the predicted vari-
ance by a factor of 108. Again, this is caused by the random
shifts of the discretized lines of the video signal, the lens
distortion, and the fact that the edge is not perfectly aligned
with the vertical axis. However, the standard deviation of
the edge positions is still very small, being approximately
one twenty-fifth of a pixel. Therefore, with the same hypoth-
esis test as used above, it can be shown that edge shifts of
one tenth of a pixel can be detected with better than 99.9%
probability. Finally, as above, the absolute position error
can be estimated by fitting a straight line through the ex-
tracted line positions. In this case, the equation of the line is
−2.12664x+321.568. The resulting absolute position errors
are depicted in Figure 19. The maximum absolute error is
approximately one thirtieth of a pixel. Therefore, edges can
be extracted with very good absolute subpixel accuracy.

5 CONCLUSIONS

A thorough performance analysis is carried out for the line
and edge extraction algorithms proposed in (Steger, 1997,
Steger, 1998a, Steger, 1998b). The quality of the line ex-
traction results is evaluated for noisy images. Analytical for-
mulas predicting the variance of the line and edge positions
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Figure 19: Absolute error of the edge position calculated
as the difference of the extracted edge positions and their
regression line.

in case the variance of the image noise is known are de-
rived and shown to correspond very well to experimentally
determined line and edge position variances. Additionally,
the variance of the line width in the presence of noise is de-
termined experimentally. Finally, the quality of the line and
edge positions and of the line widths is analyzed for real im-
ages. The results of this performance analysis indicate that
the extraction results are unbiased for noisy synthetic and
real images, that the variances of the extracted features are
very small, i.e., the sub-pixel precision is very high, and that
the absolute positions and widths can be determined to a
very high degree of sub-pixel accuracy. For real images it is
shown that position shifts of one tenth of a pixel can be de-
tected with a probability of more than 99.9%, indicating that
much better sub-pixel accuracy than one tenth of a pixel
can be achieved for real images. Thus, it is shown that the
line and edge extraction algorithms not only achieve sub-
pixel resolution, but also sub-pixel precision and accuracy.
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