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Abstract

An extensive analysis of the quality of the extraction results of a subpixel line detector and a
subpixel edge detector is carried out. The localization quality of line and edge points in the presence
of noise is analyzed analytically, and new formulas describing this relationship are derived. Tests
on synthetic noisy images show the formulas to hold very well in practice. Experiments on real
images show that subpixel accuracy better than one tenth of a pixel is possible in typical industrial
inspection tasks.

1: Introduction

The analysis of the performance characteristics of a feature extraction algorithm is very important
[8]. First, it makes an algorithm comparable to other algorithms, thus helping users in selecting the
appropriate method for the task they have to solve. Second, it helps to identify breakdown points
of the algorithm, i.e., areas where the algorithm cannot be used because some of the assumptions
it makes are violated. Therefore, in this paper an attempt is made to characterize the performance
of the subpixel line and edge detection algorithms proposed in [15, 16, 17]. The study is mainly
concerned with the subpixel precision and accuracy of the extracted line and edge positions and
line widths because of their importance for many applications, especially industrial inspection.
Following [8], for the purpose of this paper precision refers to the repeatability of the extraction
results, i.e., their variance, and accuracy refers to their absolute errors, including possible bias.

2: Subpixel line and edge detection algorithms

The line detector to be analyzed is discussed in detail in [15, 16, 17]. Therefore, only a brief
overview is given here. The algorithm models lines as curvess(t) that exhibit a characteristic 1D
line profile in the direction perpendicular to the line. The most relevant type of line profile for
applications is the asymmetrical bar-shaped profile given by

fa(x) =




0, x < −w
1, |x| ≤ w
a, x > w ,

(1)

wherew is half the line width anda ∈ [0, 1] is the asymmetry. General lines of contrasth can be
obtained by considering a scaled asymmetrical profile.
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Figure 1. Position of an asymmetrical line and its corresponding edges with width
w = 1, σ = 1, and a ∈ [0, 1].

In 1D, line positions can be extracted by convolvingfa(x) with the derivatives of a Gaussian
smoothing kernelgσ(x) of width σ. This leads to a scale-space description of the model line
profile:

ra(x, σ,w, a) = φσ(x + w) + (a − 1)φσ(x − w) (2)

r′a(x, σ,w, a) = gσ(x + w) + (a − 1)gσ(x − w) (3)

r′′a(x, σ,w, a) = g′σ(x + w) + (a − 1)g′σ(x − w) . (4)

Line points are given by the points wherer′a(x, σ,w, a) = 0. Salient lines are selected based on the
magnitude of the second derivativer′′a(x, σ,w, a). For the extraction of the line width, the two edges
to the left and right of the line position need to be extracted. They are given by the points where
r′′a(x, σ,w, s) = 0 andr′′′a (x, σ,w, a)r′a(x, σ,w, a) < 0. It can be shown that Gaussian smoothing
necessarily leads to a bias of the extracted line positions ifa 6= 0. The biased line position is given
by

l = − σ2

2w
ln(1 − a) . (5)

Similarly, the edge position will generally be biased. An example of this behavior forw = 1, σ = 1,
anda ∈ [0, 1] is shown in Figure 1. It can be seen that asa gets larger the line and edge positions
are pushed to the weak side, i.e., the side that possesses the smaller edge gradient. Furthermore, the
line width is extracted too large for alla.

In [15, 16, 17] it is shown that the bias of the line position and widths can be predicted analyti-
cally. The true values of the line width and asymmetry are mapped to the line width and gradient
ratio, which are extractable from the image. Since this map is invertible, the bias can be removed
by plugging the extracted features into the inverted bias prediction.

In 2D, lines are modeled as curvess(t) that exhibit the characteristic profilefa in the direction
perpendicular to the line, i.e., perpendicular tos′(t) = n(t). This means that the first directional
derivative in the directionn(t) must vanish, while the second directional derivative should be of
large absolute value. The necessary 1D zero crossing is obtained with subpixel accuracy by ex-
trapolating it from a local second-order Taylor polynomial. The directionn(t) is obtained from the
eigenvector corresponding to the largest eigenvalue of the Hessian matrix of the image convolved
with a Gaussian. To detect the width of the line, for each line point the closest points to the left
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(a) Extracted lines (b) Extracted edges

Figure 2. Lines and their width extracted in an aerial image (a). Edges extracted in
an aerial image (b). Lines and edges are displayed in white, while the line width is
displayed in black.

and right of the line point, i.e., along−n andn, where the absolute value of the gradient takes on
its maximum value, are determined. This is done by regarding the edges of the line as lines in the
gradient image, and using the same techniques as mentioned above to achieve subpixel accuracy.
The extracted line width and gradient ratio are plugged into the inverted bias function to achieve
unbiased extraction results. The unbiasedness of the extracted line position, width, contrast, asym-
metry, and orientation was established for noise-free synthetic images in [17]. Figure 2(a) shows
an example of the lines extracted with this approach. Note that the lines are unbiased in the entire
image, especially in the highly asymmetrical part in the center of the road.

The above mentioned approach to regard edges as lines in the gradient image leads quite naturally
to a subpixel precise edge detector [17]. An example of the edges extracted with this approach is
shown in Figure 2(b).

3: Quality of the localization of line and edge points

For real images, noise plays a significant role. Different “types” of noise can be distinguished:
The first kind is characterized by random fluctuations of the image intensity. This is the “classical”
notion of random noise. A second kind of “noise” is what might be called “clutter noise” or “struc-
tured noise,” i.e., random structures that have the same appearance as the objects of interest. In this
paper, only random noise in the classical sense will be considered for the following reasons: First,
in the intended application area of industrial inspection one usually has excellent control over the
lighting conditions. Often, objects are back-lit, and hence clutter noise can be eliminated `a priori.
Furthermore, the distinction between clutter noise and salient objects often involves a distinction
on a semantical level, which cannot be decided in a low-level feature extractor. For example, in
road extraction applications from low-resolution images roads can be detected as lines. However,
house roofs often appear as short lines, and thus can be considered as clutter noisein this particular
application, although for the low-level feature extractor they are perfectly good lines. Therefore,
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a meaningful performance evaluation of an algorithm in the presence of clutter noise seems only
possible using the semantics of a particular application. For example, an evaluation of the line
extractor discussed here and in [15, 16, 17] for the purpose of road extraction can be found in [10].

Random noise plays a significant role for the precision and accuracy of the extracted features, and
therefore is of major importance for industrial inspection, where objects often have to be measured
with subpixel precision and accuracy because of the limited resulution of the imaging sensor. This
kind of noise enters the image in different stages of the imaging process, e.g., through the photon
flux on the sensor or the quantization of the image intensity to a finite number of gray levels. The
noisen(x) can be modeled as a random process in one dimension and as a random field in higher
dimensions. Thus, the observed version of the image is given by

i(x, y) = f(x, y) + n(x, y) . (6)

The noise componentn is assumed to be wide-sense stationary, statistically independent of the
image contentf , and white, i.e., its expected valueE(n) = 0 and its autocorrelationR(τ) =
σ2

nδ(τ), whereσ2
n is the variance of the noise [13].

Obviously, if noise is added to an image the extracted line or edge positions, and in general any
extraction results, such as the line widths, will not be the correct values that would have been ob-
tained from the uncorrupted version of the image. Therefore, one of the major performance criteria
of an algorithm is the dependence of the extracted features on the input noise level. Put into dif-
ferent terms, what needs to be determined is how the variance of the line position and width and
the variance of the edge position varies as the variance of the noise in the image varies. Ideally, if
this dependency has been determined the algorithm could return an estimate of the variance of the
respective feature, e.g., the line position, if given an estimate of the variance of the image noise.
The varianceσn of the image noise can, for example, be determined by automatic procedures from
an input image [2, 7]. Such a variance estimate can serve as an aid for self-diagnosis [8], e.g., to
determine if certain requirements of the output data can be met. For example, if an application re-
quires one tenth of a pixel accuracy in the line or edge position, and the returned standard deviation
of the line position is larger than some fraction of this amount, an algorithm can alert the user to the
fact that the lines cannot be extracted with the required precision. The user could then try to fix the
problem, e.g., by changing the lighting conditions or by using a different sensor to reduce the noise
level in the images.

3.1: Previous work on localization quality

Over the years, several attempts have been made to characterize the quality of the extracted
feature positions. Most of them were made for edge detectors. Often, these quality measures are
made in connection with deriving an “optimal” operator with respect to several criteria, one of
which often is a term that tries to measure the goodness of edge locations. One of the earliest
approaches to this problem is introduced in [3], where an optimal 1D edge detector with respect
to three criteria is derived: good detection, i.e., the algorithm should have a high probability of
extracting true edge points, while having a low probability of extracting false edge points, good
localization, i.e., the extracted edge points should be as close as possible to the true edge points, and
finally having only a single response to an edge. The optimal operator is described by a convolution
of the image with a kernel of finite width2w. It is assumed to yield a maximum response at the edge
location, i.e., the first derivative of the filter response at the edge is zero. With this, the localization
criterion can be derived as follows: Assume the response of convolving the imagei with the edge
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operatore to be given by

r(x) = h(x) ∗ i(x) = h(x) ∗ f(x) + h(x) ∗ n(x) = rf (x) + rn(x) . (7)

Then, due to the image noisen, the extracted edge location will lie at a pointxe, wherer′(xe) = 0.
Thus,r′n(xe) + r′f (xe) = 0. If this equation is expanded into a Taylor series of order 1 about the
origin, one obtainsr′(xe) = r′(0) + r′′(0)xe + O(x2

e). Since the model edge is located at 0, by
assumptionr′(0) = 0, and hencexe ≈ −r′n(xe)/r′′(0). In [3] it is now claimed thatr′n(xe) is a
Gaussian random variable with variance

E(r′n(xe)2) = σ2
n

w∫
−w

f ′(x)2 dx . (8)

Thus, the variance of the edge position is given by

E(x2
e) =

σ2
n

w∫
−w

f ′(x)2 dx


 w∫

−w

h′(−x)f ′(x) dx




2 . (9)

These continuous criteria for an optimal edge detector are adapted for pixel-precise discrete edge
operators in [4], where mainly the formulation of the single response criterion changes.

This definition of the localization quality measure was later criticized for being incorrect [19].
The major objection put forth there is that (8) only holds ifxe is constant for all realizations, which,
of course, is not the case. Another objection is that the localization criterion in [3] only takes into
account the first zero crossing ofr′(x), whereas it should take into account all zero crossings of the
response. Therefore, the physical density of the zero crossings, i.e., the expected number of zero
crossings per unit time, of the edge detector applied to a noisy step edge is derived in [19]. This
density is given by

µ(x) =
1
2π

√
−R′′

n′(0)
Rn′(0)

exp(−f(x)2/2σ2
n′) . (10)

The authors note that1 − µ(x) is a measure for the suppression of the density of zero crossings
by the edge operator, and go on to prove that the first derivative of the Gaussian kernel is the
unique function that optimizes this criterion. With this criterion, in effect the localization and
single response criteria used in [3] are combined into a single criterion, yielding a better optimality
criterion for edge operators. Of course,µ(x) is not very useful to characterize the dependency of
the localization of edges on the image noise, precisely for the fact that all zero crossings are taken
into account.

For this reason, an attempt is made in [12] to derive the true variance of the edge position.
The authors note that in addition to the problems mentioned in [19], i.e., the wrong derivation
of E(r′(x)2), the Taylor expansion of the edge location should be done differently. They claim
that the correct Taylor expansion is given byr′(xe) = r′n(0) + (r′′f (0) + r′′n(0))xe, and hence
xe ≈ −r′n(0)/(r′′f (0) + r′′n(0)). They then go on to derive the probability density ofxe and arrive
at the result that it is given by a sum of two Cauchy densities. Therefore, they note, the variance
of xe does not exist. Of course, in this case the mean ofxe also would not exist. What this
obviously erroneous result implies is that if even the tiniest amount of noise is added to an image,
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the edge locations would fluctuate wildly all over the image, which is, of course, not supported by
experimental evidence. If this were true, edges could in effect not be extracted at all because their
positions would be meaningless.

A different approach is given in [1], where the imaging process is modeled in several steps. First,
the ideal continuous image is assumed to be blurred by the imaging device with a Gaussian kernel
with standard deviationσb. Then, the image is sampled and noise with standard deviationσn is
added to the image. Finally, edge extraction is done by smoothing the image with a Gaussian kernel
with standard deviationσe and calculating the gradient of the resulting image. The authors give the
following formula for the variance of an edge of heighth, if the edge extraction is performed in a
direction forming an angleα with the direction perpendicular to the edge:

E(x2
e) =

3σ2
n(σ2

b + σ2
e)

3

8h2σ6
e cos6 α

. (11)

Unfortunately, almost no details of the derivation of (11) are given, and hence it is hard to judge
whether (11) is correct.

Contrary to this, edge detection is regarded as template matching in [8]. In this case, the variance
of the edge position is given by

σ2
e =

σ2
n

w∑
r=−w

w∑
c=−w

f2
u(r, c)

, (12)

where the template is of size(2w + 1) × (2w + 1) andfu(r, c) is the derivative of the template in
the direction perpendicular to the edge. Unfortunately, since the edge and line detection algorithms
discussed in Section 2 do not use template matching, this result does not apply to them.

3.2: Variance of the zero crossing of an arbitrary function

Because none of the above derivations of the variance of the edge position are applicable to the
problem of determining the variance of the line position and width, and because some of them are
erroneous even for the problem of determining the variance of the edge position, there is a need
for an, at least qualitatively, correct formula that also is supported by experimental evidence. The
algorithm of determining the line position in the 1D continuous case can be broken down into two
steps: the input signal is first convolved with the derivative of a Gaussian kernel, and then the zero
crossings of the resulting response functionr′(x) are determined, where additionallyr′′(x) < 0
is required. For edges, the only change is that the zero crossings of the second derivative are
determined. Since convolution with a Gaussian kernel is a linear operation, the responser(x) of
the line detection operator to the corrupted signali(x) is given by

r(x) = gσ(x) ∗ i(x) = gσ(x) ∗ f(x) + gσ(x) ∗ n(x) = rf (x) + rn(x) (13)

and analogously for the corresponding derivatives. Thus, the response of the line detection operator
to a model line profilef(x) corrupted by wide-sense stationary white noisen(x) can be broken
down into a deterministic partrf (x) and a stochastic processrn(x). The deterministic part can, of
course, be determined analytically, e.g., by (2)–(4) for the asymmetrical bar-shaped profile. Note
that the deterministic part of the response has exactly one zero crossing ofr′(x) in [−∞,∞]. The
random part of the response shifts this zero crossing and may introduce additional zero crossings of
r′(x). In order to determine the localization quality of the line detection algorithm, it is therefore
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useful to consider the variance of the zero crossing ofr′(x) closest to the zero crossing of the
deterministic partr′f (x) of the response.

Since the noisen(x) is assumed to be wide-sense stationary and white, the statistics of the
response of the line detector to the noise can be calculated easily [13, 18]. Because the mean value
E(n(x)) is assumed to be zero, convolution ofn(x) with an arbitrary derivative of the Gaussian
kernel is also a stationary stochastic process with zero mean. Furthermore, the autocorrelation
functionRr(τ) of the noise smoothed with a Gaussian kernel is given by [13]

Rr(τ) = σ2
ng√2σ(τ) , (14)

while the autocorrelation function of the noise convolved with the first derivative of a Gaussian
kernel is

Rr′(τ) = −R′′
r (τ) = −σ2

ng′′√
2σ

(τ) . (15)

Thus, the variances of the respective stochastic processes are

σ2
r = Rr(0) =

σ2
n

2
√

πσ
(16)

σ2
r′ = Rr′(0) =

σ2
n

4
√

πσ3
. (17)

With this, the problem of determining the variance of the line position can be transformed to the
equivalent problem of determining the variance of the zero crossing of an arbitrary function with
exactly one zero crossing, e.g., (3), corrupted by a the addition of a stationary stochastic process
with zero mean and a given autocorrelation function, e.g., (17). Without loss of generality, the zero
crossing of the function can be assumed to be at the origin.

Before an approximation of the variance of a zero crossing with added noise will be derived,
it is useful to look at this problem in a purely geometrical manner to get an intuitive notion of
the dependency. Assume for the moment that the uncorrupted signal is simply the linear function
f(x) = hx, and that the distribution of the noisen(x) is uniform in some interval[−m,m] for
all x. Then, conceptually one can think of the corrupt signali(x) to be contained entirely within a
“tube” of diameterdy = 2m aroundf(x), as shown in Figure 3. Therefore, the zero crossings must
all lie in an interval of diameterdx around 0. Obviously,dy/dx = h, and therefore the width of this
interval is proportional to1/h = 1/f ′(0). Although the distribution of the zero crossings within
the interval is unknown, the variance of the zero crossings can be expected to be proportional to
1/f ′(0)2. Thus, it can be conjectured that for general functions the variance of the zero crossings
is proportional toσ2

n/f ′(0)2.
In order to prove this conjecture, a Taylor series expansion of order one of (13) can be performed,

where for the moment it should be assumed thatrf (x) andrn(x) are not obtained by convolution
with a Gaussian, but are an arbitrary function and noise with a given autocorrelation function,
respectively. Thus,r(x0) = 0 for somex0, and hence

r(x0) ≈ r(0) + r′(0)x0 = rf (0) + rn(0) + (r′f (0) + r′n(0))x0 . (18)

By assumption,rf (0) = 0, and hence

x0 = − rn(0)
r′f (0) + r′n(0)

. (19)
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Figure 3. If the noise n(x) is assumed to be uniformly distributed in [ −m, m] for all x
and f(x) = hx, the zero crossings of i(x) = f(x)+n(x) must be contained in an interval
of width dx = dy/h.

The calculation of the variance ofx0 from (19) is extremely difficult. However, if one assumes that
the varianceσ2

r′ of r′n(0) is small with respect to the first derivative of the signalr′f (0), the term
r′n(0) can be omitted from the denominator of (19):

x0 ≈ −rn(0)
r′f (0)

. (20)

With this simplification it is a simple matter to calculate the variance ofx0. The denominator is
a known deterministic function, while the nominator is a stationary stochastic process with known
autocorrelationRr(τ), and therefore with known varianceσ2

r = Rr(0). Thus, the varianceσ2
0 of

the locationx0 of the zero crossing is given by

σ2
0 =

σ2
r

r′f (0)2
. (21)

It is useful to check whether this result also holds in practice. To do this, various functionsrf (x)
with exactly one zero crossing were sampled at discrete pointsxi, i = −32, . . . , 32. For the tests
the following functions were used with varying signal levelsh: f(x) = hx, f(x) = h arctan x,
f(x) = h

√
2π(φ(x) − 0.5), andh tanh(x). Note that all these functions haver′f (0) = h. The

noisern(x) was generated by convolving Gaussian white noise of standard deviation 1 with a
Gaussian smoothing kernel of widthσ. Thus, it has the autocorrelationRr(τ) = g√2σ(τ), i.e.,
σr = 1/(2

√
πσ). For the experiments,σ = 2 was used. From the sampled valuesri = rf (xi) +

rn(xi), zero crossings are extracted to subpixel accuracy by linear interpolation. Since the relation
r′f (0) = h does not hold for the sampledri, care is taken to chooseh in such a way that the
discrete approximation of the first derivative has the valueh, i.e., (r1 − r−1)/2 = h. For each
function, 100000 experiments were performed, and the variance of the closest zero crossing to 0
was calculated from these experiments. The results are shown in Figure 4. As can be seen, for
high signal to noise ratios, i.e., for largeh, the variance of the zero crossings predicted by (21) and
the experimentally determined variance match almost perfectly. If the signal levelh is less than
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Figure 4. Variance of the zero crossing of different test functions when corrupted
with noise of known autocorrelation and analytically predicted zero crossing vari-
ance. Note the logarithmic scale of the y-axis.

1, i.e., if the standard deviation of the noise is larger than approximately 40% of the amplitude of
the signal, the termr′n(0) neglected in (20) becomes important. As can be seen, in this range of
signal to noise ratios, the variance of the zero crossings is estimated too small by (21). Fortunately,
such low signal to noise ratios occur extremely rarely in real images. One notable exception are
Synthetic Aperture Radar (SAR) images, where the speckle effect can create very low signal to
noise ratios [11]. Thus, (21) in most cases gives a very accurate estimate of the true variance of
the zero crossings of a function corrupted by noise. If a more precise estimate of the variance
is needed, one should note that this problem is intimately related to the problem of determining
the first-passage density of a stochastic process to an arbitrary boundary, for which a solution was
presented in [5]. However, since the first-passage density derived in [5] is rather complex and can
only be calculated numerically, it is not applied here.

3.3: Variance of line and edge positions

With these preliminaries, the predicted variance of the line and edge positions can be determined
easily. Since the edge model is much simpler than the line model it is considered first. To derive the
variance of the edge locations in the 2D case, without loss of generality it can be assumed that the
edge is straight and lies on they-axis. This can be done because the independence of the unbiased-
ness of the edge and line positions on the orientation of the edge or line was shown for synthetic
noise-free images in [17] and because the noise is assumed to be wide-sense stationary white noise,
i.e., it is rotationally invariant. Therefore, the edge position is given by the zero crossings of the
model edge convolved with the second directional derivative along thex-axis of a Gaussian kernel.
Thus, the edge location is given by

rxx(x, y) = rf,xx(x, y) + rn,xx(x, y) = 0 . (22)

The 2D autocorrelation functionRrn,xx of rn,xx(x, y) is given by [18]

Rrn,xx(τx, τy) = σ2
ng′′′′√

2σ
(τx)g√2σ(τy) , (23)
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whereσ2
n is the variance of the noise in the original image. Thus, the variance of the random noise

field is

σ2
rn,xx

=
3σ2

n

16πσ6
, (24)

whereσ is the standard deviation of the Gaussian smoothing kernel. For the response of the filter
to the model step edge needed in (21), obviously

rf,xxx(x, y) = hg′′σ(x) , (25)

whereh is the contrast of the edge. Thus,

rf,xxx(0, 0)2 =
h2

2πσ6
. (26)

Therefore, the variance of the location of an edge in a 2D image is given by

σ2
e =

σ2
rn,xx

rf,xxx(0, 0)2
=

3σ2
n

16πσ6

h2

2πσ6

=
3
8

σ2
n

h2
. (27)

This result is quite surprising since it signifies that the varianceσ2
e of the edge locations is indepen-

dent of the choice of the smoothing parameter of the Gaussian kernel used to calculate the gradient
of the image. This counterintuitive result should be verified by experiments. To do so, test images
of size32 × 32 were generated with exactly one edge in the center of the image. Note that the test
images thus generated are mainly intended to verify (27) and to test whether it holds for discrete
images. Real images will be considered in Section 4.3. From these images, edges were extracted
with Gaussian derivatives of varying standard deviationσ. The input images were corrupted with
Gaussian noise of varying standard deviationσn. For each combination ofσ andσn, 1000 exper-
iments were performed, resulting in roughly 30000 edge points from which the mean value and
variance of the edge positions were computed. Figure 5 shows that the mean value of the edge
positions is unbiased. The maximum deviation of the edge positions in this series of experiments
is roughly one hundredth of a pixel. More importantly, Figure 6(a) shows the calculated variances
of the edge positions. As can be seen, the results do not depend on the degree of smoothing. To
check the quality of the edge position variance predicted by (27), Figure 6(b) displays the ratio of
the predicted and extracted edge position variances. This ratio is a measure of the bias of (27). As
can be seen, it is very close to 1 for most combinations ofσ andσn. The maximum error occurs if
σ andσn are close to zero. Overall, (27) gives an excellent estimate of the edge position variance.

In order to predict the variance of the line position in 2D images if the bias removal, i.e., the
width and position correction, is not applied, the same technique can be used. As above, without
loss of generality the line can be assumed to lie on they-axis. Thus, the line position is given by
the zero crossings of the model line convolved with the first directional derivative along thex-axis
of a Gaussian kernel. Hence, the line location is given by

rx(x, y) = rf,x(x, y) + rn,x(x, y) = 0 . (28)

The 2D autocorrelation functionRrn,x of rn,x(x, y) is

Rrn,x(τx, τy) = −σ2
ng′′√

2σ
(τx)g√2σ(τy) , (29)
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Figure 5. Mean value of the edge position as a function of the standard deviation σ
of the Gaussian smoothing kernel and the standard deviation σn of the input noise.
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Figure 6. Variance of the edge position as a function of the standard deviation σ of
the Gaussian smoothing kernel and the standard deviation σn of the input noise (a).
Ratio of the predicted and extracted edge position variances, i.e., bias of the predic-
tion.

and hence the variance of the random noise field is

σ2
rn,x

=
σ2

n

8πσ4
. (30)

Since the asymmetry of a line causes the line position to shift, the denominator of (21) has to be
evaluated at the biased line positionl given by (5). With this, the variance of the position of a 2D
line is given by

σ2
l =

σ2
rn,x

rf,xx(0, 0)2
=

σ2
n

8πσ4

1
h2r′′a(l, σ, w, a)2

, (31)

wherer′′a(l, σ, w, a) is given by (4). Unfortunately, this expression cannot be simplified very much.
Therefore, to get an impression of the dependency of the line position variance on different pa-
rameters, Figure 7(a) shows the predicted variance as a function of the standard deviationσ of the
Gaussian smoothing kernel, while Figure 7(b) shows the predicted variance as a function of the line
width w. As can be seen, the line position variance is smallest forσ = w. Furthermore, ifσ is
chosen much too small for a given line widthw, the line position variance increases rapidly.

Again, it has to be checked whether (31) holds for synthetic test images. To do so, images of size
32 × 32 were generated with exactly one line lying in the center of the image. Note again that the
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Figure 7. Predicted variance of the line position as a function of the standard devia-
tion σ of the Gaussian smoothing kernel for a line of width w = 1, contrast h = 100,
and noise of standard deviation σn = 10 (a), and as a function of the line width w for
σ = 1, h = 100, and σn = 10 (b).

test images thus generated are mainly intended to verify (31) and to test whether it holds for discrete
images. Real images will be considered in Section 4.2. To simulate the typical application case,
theσ used for smoothing was kept constant, while the total width2w of the line was varied in the
interval [σ, 5σ] in subpixel increments. To obtain subpixel line widths in the image, it was assumed
that the sensor has a square aperture function, i.e., integrates the incoming light intensity over the
area of each pixel. Therefore, the intensity of a pixel is proportional to the area of the pixel covered
by the line. Furthermore, the asymmetrya of the line was varied in the interval[0, 0.75]. The input
images were corrupted with Gaussian noise of varying standard deviationσn. For each combination
of a, w, andσn, 1000 experiments were performed, resulting in roughly 30000 edge points from
which the mean value and variance of the edge positions were computed. For the experiments, lines
of contrasth = 100 were extracted withσ = 2. Figure 8 displays the mean line position error, i.e.,
the difference between the mean value of the line positions extracted from the image and the true
line positions fora = 0. As can be seen, for all integer line widths the mean error is very close to
zero. For non-integer line widths the mean may lie up to 0.07 pixels from the true line position. This
effect is caused by extrapolation errors in the subpixel extraction, and not by noise, as is discussed
in [17]. Thus, noise introduces no new bias of the line positions, and therefore the line detector
can be regarded as unbiased in the presence of noise. Figure 9(a) shows the extracted line position
variance. As can be seen, the cross sections of the surface in this figure closely resemble the shape
of the predicted variance displayed in Figure 7(b). To check the validity of (31), Figure 9(b) shows
the ratio of the predicted and extracted line position variances. This measure of the bias of (31) is
very close to 1 for almost all combinations ofw andσn. For integer line widths and small noise
variancesσ2

n, the extracted line position variance is larger than the predicted variance by up to a
factor of five because the line positions lie at the borders of a pixel, where the extrapolation error is
largest, and thus one should expect the variance to be larger in these cases. Similar results are also
obtained for all other values of the asymmetrya. Figure 10 exemplifies this by showing the line
position variance and its bias fora = 0.5. As can be seen, the measure of the bias is again very
close to 1 for almost all combinations ofw andσn. Overall, (31) gives an excellent estimation of
the line position variance for uncorrected line extraction results.

Another very important performance measure for lines is the variance of the extracted line
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Figure 8. Mean value of the line position as a function of the total line width 2 w and
the standard deviation σn of the input noise.
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Figure 9. Variance of the line position as a function of the total line width 2 w and
the standard deviation σn of the input noise (a). Ratio of the predicted and extracted
line position variances, i.e., bias of the prediction (b).

widths. Since the total line width in case the width correction is not applied is given by the distance
of the two edges of the line, in principle it seems possible to describe the variance of the line width
using the approach introduced in this section. For example, one could calculate the variances of
the two edge positions, assume they are independent, and obtain the variance of the line width as
the sum of the two edge position variances. However, this has several problems. First, the edge
locations at which (21) must be evaluated can only be calculated numerically. Therefore, no ana-
lytical result is possible. Instead, the width variance would have to be tabulated. More importantly,
however, the edge positions, and thus their variances, are not independent of one another, as can
be seen from the discussion in Section 2. Finally, since the first edge point found on each side of
the line is used to calculate the width of the line without taking the edge strength into account, it
can be expected that for high noise levels the edge position is much more affected by noise than
predicted by an analytical model because then the first edge point found may be caused by noise
instead of the true edge point. For these reasons, the approach of adding the variances of the two
edge locations cannot return very good results, and this was verified on the synthetic examples used
above for the line position variance. From this discussion it follows that a good analytical predic-
tion of the variance of the line width seems very hard to obtain. Therefore, this topic has not been
pursued further in this paper. Instead, only the experimentally obtained means and variances of the
line width will be discussed. These are shown fora = 0 in Figures 11(a) and (b), respectively.
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Figure 10. Variance of the line position for a = 0.5 (a). Bias of the variance prediction
for a = 0.5 (b).
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Figure 11. Mean (a) and variance (b) of the line width as a function of the total line
width 2 w and the standard deviation σn of the input noise.

As can be seen from Figure 11(a), the noise has almost no influence on the extracted mean width
error, i.e., the difference of the mean line width and the true line width. As is to be expected from
the discussion in Section 2, the mean line width is biased. Figure 11(b) displays the experimentally
obtained varianceσ2

w of the line widths. As can be seen, it again increases proportionally toσ2
n.

Furthermore, the width variance is relatively small for smallw. It increases significantly only for
largew. Again, similar results hold for all asymmetriesa.

The final important question is how the bias removal, i.e., the position and width correction,
influences the variances of the line position and width. Conceptually, the bias removal is given by
a functionf : (v, r) 7→ (w, a), wherev is the width extracted from the image,r is the gradient
ratio at the two extracted edge points,w is the true line width, anda is the true asymmetry. Thus,
standard error propagation schemes could be used to propagate the variancesσ2

l andσ2
w through

f . If the covarianceσl,w of the line position and width were known, the covariance matrixΣu of
the uncorrected could be calculated, and the covariance matrixΣc of the corrected line position and
width would simply be given by [9]

Σc = DfΣuDfT , (32)

whereDf is the Jacobian matrix, i.e., the first derivative, off . Sinceσ2
w is only known empirically,

since an explicit estimation forσl,w is very hard to obtain, and sincef can only given in tabulated
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Figure 12. Mean (a) and variance (b) of the line position as a function of the total
line width 2 w and the standard deviation σn of the input noise if the line width and
position correction is applied.

form, no attempt has been made to derive an explicit formula forΣc. However, from the shape
of the bias inversion function displayed in [15, 16, 17] it can be estimated that the variances of
the corrected line position and width will be slightly larger than the uncorrected variances because
the partial derivatives off are larger than 1 almost everywhere. Figure 12 displays the mean and
variance of the corrected line position, while Figure 13 shows the mean and variance of the corrected
line width. From Figure 12(a) it can be seen that the line position correction slightly increases the
mean error in areas of non-integer line width, i.e., in areas where the line position does not lie close
to the center of a pixel. The maximum error increases from approximately 0.07 to 0.09 pixels.
Furthermore, from Figure 13(a) it can be seen that the corrected line widths are much closer to
the true line widths. The corrected line widths exhibit a small bias only if the line width is very
small compared toσ. This fact was also observed for noiseless images in [17], and thus comes as
no surprise. The variances of the line position are slightly decreased for smallw, while they are
slightly increased for largew, as can be seen when Figure 12(b) is compared to Figure 9(a). On the
other hand, the line width variance increases by a large amount for smallw, while the increase is
small for largew, as can be seen by comparing Figures 13(b) and 11(b). Essentially, for smallw
the correction seems to trade better line position variance for worse line width variance. As above,
qualitatively similar results hold for all other values of the asymmetrya.

In summary, from the discussion in this section it can be concluded that the extracted line posi-
tions and widths are unbiased in the presence of noise, and that the variances of the line positions
and widths are very small. Thus, subpixel accuracy can definitely be achieved for noisy synthetic
images, while it seems very likely that this kind of accuracy may also be achievable in real images.

To conclude this section, it should be noted that sometimes other performance measures apart
from the localization quality also play an important role. The most often used measure is the
detectability of a feature in the presence of noise. Essentially, this can be modeled by the signal to
noise ratio, i.e., the ratio of squared magnitude of the derivative of the model feature in which the
thresholding is done and the variance of the noise in this derivative. For edge detection, the relevant
derivative is the first derivative, while for line detection it is the second derivative. Thus, for edge
detection the signal to noise ratior is given by

r =
r′e(0, σ, h)2

σ2
rn,x

=
4h2σ2

σ2
n

, (33)
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Figure 13. Mean (a) and variance (b) of the line width as a function of the total line
width 2 w and the standard deviation σn of the input noise if the line width and posi-
tion correction is applied.

while for lines it is given by

r =
h2r′′a(l, σ, w, a)2

σ2
rn,xx

=
16πσ6h2r′′a(l, σ, w, a)2

3σ2
n

. (34)

This leads to the fairly obvious conclusion that features become easier to detect as the standard
deviationσ of the Gaussian used to smooth the image is increased. Of course, this only holds if
there are no other nearby features complicating the extraction.

4: Experiments on real images

All the experiments so far have been done on synthetic test images. Since for real imaging
conditions various assumptions made in the test so far may not hold, it is important to perform
experiments on real images. For example, the camera used to acquire an image may not have an
ideal square aperture function or the framegrabber may not exhibit a linear increase in gray values
as the scene intensity increases linearly.

4.1: Experimental set-up

In order to test the subpixel accuracy of the line detection algorithms the following strategy was
adopted: A test set containing five lines of widths 2 mm–10 mm were printed on a high-quality laser
printer. The resulting print was mounted on a table which can be shifted in one direction in 10µm
increments. A camera with a 12 mm lens was mounted perpendicular to the table at a distance
of approximately 50 cm. A standard analog framegrabber was used to acquire the images, since
this is by far the most common setup in industrial applications, where subpixel measurements are
extremely important. For edge detection, the test set contained a single edge in the center of the
print. These test images were chosen because they are representative for many industrial inspection
tasks, where often manufactured workpieces having straight or moderately curved edges or lines
have to be measured. Of course, this test set-up is by no means intended to be exhaustive. Figure 14
shows an image of the line and edge test sets. Note that, although the lens used in this test is fairly
good for computer vision standards, there is nevertheless a significant radial distortion. To test the
subpixel accuracy, each of the test sets was shifted by 1 mm in increments of 50µm, resulting in
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(a) Line test set (b) Edge test set

Figure 14. Test sets used to check the subpixel accuracy of the line and edge detec-
tion algorithms.

∆ t

Video signal

Pixel clock

HSync

Figure 15. Scheme to start the digitization of one line of a video signal in current
framegrabber architectures: Digitization is started at the first rising flank of the
unsynchronized pixel clock after the horizontal sync signal has occurred, resulting
in an offset of ∆t.

a shift of approximately 2 pixels in total in the image. In each position of the measurement table,
20 images were taken. Thus, for each test set a total of 420 images were taken. The goal of the
test is to determine the precision, i.e., the variance, of the line and edge position measurements and
the absolute position shift of the line and edge positions in order to decide whether it is possible to
detect subpixel shifts of 50µm or, equivalently, approximately one tenth of a pixel.

Before this can be done, a few words on the architecture of standard analog framegrabbers are
necessary since the technology used for them will influence the quality of the acquired images.
The main implementation issue for framegrabbers is when to start digitizing a line of the video
signal. To do this, most analog framegrabbers have a clock chip running at several times the pixel
resolution, typically 4–10 times. They start the digitization process on the first upward flank of
the pixel clock signal after the falling flank of the horizontal synchronization (HSync) signal of the
video signal has occurred, as shown in Figure 15. Thus, for each line there is a random offset of
∆t by which the line is shifted with respect to the true HSync signal, resulting in a random shift
by up to one fourth to one tenth of a pixel, depending on the frequency of the pixel clock. This
seems to prevent subpixel accuracy of better than one tenth of a pixel. Fortunately, however, the
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Figure 16. Experimentally determined noise distributions and Gaussian distribu-
tions with the same mean and variance for the line test set (a) and the edge test
set (b).

random offset is independent for each line of the video signal. Thus, one can expect to achieve
better accuracy by the smoothing done in the line or edge detector. In effect, the random shifts in
the digitized video signal can be modeled as an additional noise source. From this discussion it
follows that the noise should be larger at the border of the features of interest since the subpixel
shifts result in larger gray value variations there, while they have very little influence in regions of
approximately constant gray value. Of course, this problem does not occur if the framegrabber is
synchronized with the pixel clock of the camera or if a digital camera is used.

In order to test the hypothesis that the random shifts in each line of the video signal lead to
increased noise at edge positions and to obtain the noise statistics of the test images, the average
of all 20 images within each shift can be calculated. Then, the individual images can be subtracted
from the mean image to obtain the noise distribution for that particular image. If the distributions
over all 420 images are averaged, a very good approximation of the noise distribution is obtained.
Figure 16 shows the noise distributions thus obtained for the line and edge test set, superimposed by
a Gaussian distribution of the same mean and variance. As can be seen, the Gaussian distribution
yields a very good approximation of the noise distribution in both cases. The standard deviations
of the noise were estimated as approximately 1.06 and 1.10, respectively, which is very small.
Figure 17 shows small parts of test images subtracted from their corresponding mean image. As
can be seen, the random shifts lead to significantly increased noise at the edges of the line in
Figure 17(a) and at the edge in Figure 17(b). Therefore, the line and edge locations may not be as
accurate as one would expect from the discussion in the previous section.

4.2: Subpixel accuracy of line position and width

To test the subpixel accuracy of the line detection algorithm, only the center line of the test set of
width 6 mm was used since it turned out that the lens distortion was too large to obtain meaningful
results for the other four lines. Although the center line was carefully aligned to be as vertical
as possible, even for this line the lens distortion influences the extraction results, if statistics are
calculated over the entire line. Therefore, small windows of height 25 were used to calculate the
mean line position and width, and their corresponding variances, because for these small windows
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(a) Noise in a line image (b) Noise in an edge image

Figure 17. Examples of a test image subtracted from its corresponding mean image
for the line test set (a) and the edge test set (b). The gray values in the images have
been scaled by a factor of 5 for clarity.
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Figure 18. Line position and variance as a function of the shift of the line in mm.

the lens distortion played only a small role. Since the means and variances are calculated over 20
images, a total of 500 points are used to obtain the statistics. The experiments showed that the
resulting statistics are independent of the position of the window. Because the center line of the
test images has a total width of approximately 12 pixels, the optimalσ = 6/

√
3 [16] was used for

the extraction. Figure 18(a) shows the extracted line position as a function of the shift of the line
in mm. The resulting curve is almost a perfect straight line. The precision of the line position, i.e.,
its variance, is displayed in Figure 18(b), from which it can be seen that the maximum variance
is approximately 0.00115, i.e., the maximum standard deviation is roughly one thirtieth of a pixel.
From (31) the line position variance can be estimated as1.84 · 10−5. Thus, the extracted position
variance is larger than the predicted variance by a factor of 62.5 mainly due to the random line shifts
induced by the framegrabber, the still noticeable lens distortion in this small part of the image, and
the fact that the line is not perfectly aligned with the vertical axis. However, since the position
variance is still very small it can be expected that the goal of these experiments to detect subpixel
shifts of one tenth of a pixel can be achieved. This can easily be verified by testing the hypothesis
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Figure 19. Absolute error of the line position calculated as the difference of the
extracted line positions and their regression line as a function of the shift of the line
in mm.

that the line positions corresponding to two adjacent shifts are equal [6]. These tests have been
performed and the hypothesis that the line positions are equal can be rejected with a probability
greater than 99.9% for all line positions. Therefore, relative shifts of one tenth of a pixel can
definitively be detected in real images.

Another interesting point is the absolute position accuracy of the line. Since the camera was not
calibrated, this is very hard to obtain. If, however, it is assumed that the linear shift of the object
in the real world corresponds to a linear shift of the line in the image, a straight line can be fitted
through the line positions extracted from the image. The fitting should, of course, take the extracted
position variances into account. The equation of the line obtained for the experiment shown in
Figure 18 is−2.07633x + 317.364. Therefore, it is likely that 1 mm in the real world corresponds
to 2.07633 pixels in this part of the image. With this, the absolute position error of the line can
be calculated as the difference of the extracted line position and the regression line. The results
are shown in Figure 19. As can be seen, the absolute position errors are less than one fortieth of
a pixel. The remaining errors show a systematic sinusoidal component, which may be caused by
the mapping of the scene intensity to the gray values in the image performed by the framegrabber.
Since they are very small, the line extraction algorithm yields very good absolute accuracy on real
images as well. Of course, to get meaningful positions in real world coordinates the camera must
be calibrated.

The final question for the line detection algorithm is the accuracy of the extracted line widths.
The extracted line width and its variance are shown in Figure 20. The line width seems to be
centered around 12 pixels. If the above discussion on the correspondence between 1 mm to 2.07633
pixels is taken into account, this would imply that the width of the 6 mm wide line is underestimated
by approximately 3.7%. Therefore, the extracted line width is very close to the true line width.
Furthermore, it can be seen by the regression line superimposed in Figure 20(a), that the line width
increases as the shift increases. This can be attributed to the fact that for increasing shifts the line
moves towards the center of the image where lens distortions are not as severe. Finally, Figure 20(b)
displays the line width variance obtained from this experiment. As can be seen, the variance is less
than 0.0005 almost everywhere, i.e., the standard deviation of the extracted line widths is less than
one fortieth of a pixel. Thus, line widths can be extracted with very high subpixel accuracy.
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Figure 20. Line width and variance as a function of the shift of the line in mm.
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Figure 21. Edge position and variance as a function of the shift of the edge in mm.

4.3: Subpixel accuracy of edge position

To conclude this section, the results of performing the same kind of experiment for the subpixel
edge detection algorithm are discussed. The edges were extracted using Gaussian derivatives with
σ = 1. The resulting edge positions are exhibited in Figure 21(a). As was the case for lines,
the extracted edge positions lie very close to a perfect straight line. Figure 21(b) displays the
corresponding variances of the edge positions. The maximum variance is approximately 0.0017.
The variance predicted by (27) is1.57 · 10−5, i.e., the extracted variance is larger than the predicted
variance by a factor of 108. Again, this is caused by the random shifts of the discretized lines
of the video signal, the lens distortion, and the fact that the edge is not perfectly aligned with
the vertical axis. However, the standard deviation of the edge positions is still very small, being
approximately one twenty-fifth of a pixel. Therefore, with the same hypothesis test as used above,
it can be shown that edge shifts of one tenth of a pixel can be detected with better than 99.9%
probability. Finally, as above, the absolute position error can be estimated by fitting a straight line
through the extracted line positions. In this case, the equation of the line is−2.12664x + 321.568.
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Figure 22. Absolute error of the edge position calculated as the difference of the
extracted edge positions and their regression line.

The resulting absolute position errors are depicted in Figure 22. The maximum absolute error is
approximately one thirtieth of a pixel. Therefore, edges can be extracted with very good absolute
subpixel accuracy. If the remaining errors of up to one thirtieth of a pixel are too large for an
application, a scheme as the one given in [14] could be used to estimate and remove the remaining
errors. However, since the remaining errors are not generic, i.e., depend on the camera, lens, and
framegrabber used, they are not modeled in this paper.

5: Conclusions

A thorough performance analysis is carried out for the line and edge extraction algorithms pro-
posed in [15, 16, 17]. The quality of the line extraction results is evaluated for noisy images.
Analytical formulas predicting the variance of the line and edge positions in case the variance of
the image noise is known are derived and shown to correspond very well to experimentally deter-
mined line and edge position variances. Additionally, the variance of the line width in the presence
of noise is determined experimentally. Finally, the quality of the line and edge positions and of the
line widths is analyzed for real images. The results of this performance analysis indicate that the ex-
traction results are unbiased for noisy synthetic and real images, that the variances of the extracted
features are very small, i.e., the sub-pixel precision is very high, and that the absolute positions and
widths can be determined to a very high degree of sub-pixel accuracy. For real images it is shown
that position shifts of one tenth of a pixel can be detected with a probability of more than 99.9%,
indicating that much better sub-pixel accuracy than one tenth of a pixel can be achieved for real
images. Thus, it is shown that the line and edge extraction algorithms not only achieve sub-pixel
resolution, but also sub-pixel precision and accuracy.
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