
AUTOMATIC ROAD EXTRACTION BASED ON MULTI-SCALE MODELING, CONTEXT, AND SNAKES

Helmut Mayer1, Ivan Laptev2, Albert Baumgartner1, Carsten Steger3

1Chair for Photogrammetry and Remote Sensing
Technische Universität München, D-80290 Munich, Germany

2 Computational Vision and Active Perception Laboratory
NADA, KTH, S-10044 Stockholm, Sweden

3Forschungsgruppe Bildverstehen, Informatik IX
Technische Universität München, D-80290 Munich, Germany

E-mail: {helmut|albert|ivan}@photo.verm.tu-muenchen.de; stegerc@informatik.tu-muenchen.de
URL: http://www.photo.verm.tu-muenchen.de

KEY WORDS: Automatic Road Extraction, Scale-Space, Context, Snakes

ABSTRACT

This paper approaches the problem of road extraction from three different directions. The first is the use of multiple scales.
This combines detailed information of fine scale, like the markings, with abstract information of coarse scale, like the road
network. The second direction is the extension of the multi-scale modeling with the context, i.e., the relations to other
objects like buildings or trees. The context itself is split hierarchically into local context sketches, like occlusion shadow,
which is modeling a tree casting a shadow on the road, and global context regions, i.e., open rural, suburb urban, and
forest areas which comprise the whole image. The context information is very useful to focus the extraction. The third
direction taken in this paper is the use of snakes. So-called ribbon snakes are used not only to extract roads in a robust
manner in fine scale, but they can be also used to bridge gaps in the extracted roads due to occlusions or shadows cast by
buildings and trees. Practical examples show the validity of the approach.

1 INTRODUCTION

The most common methods for the extraction of roads are
the detection or tracking of lines in coarse scale, i.e., low
resolution imagery, and profile matching or detection of
roadsides in fine scale, i.e., high resolution images. The
approaches combine different methods and incorporate ad-
ditional knowledge, e.g., geometrical constraints, in various
ways. A main criterion to distinguish them is the interac-
tion of a human operator. In semi-automatic schemes an
operator selects an initial point and a direction for a road
tracking algorithm (McKeown and Denlinger, 1988, Vossel-
man and de Knecht, 1995). In (Grün and Li, 1996, Merlet
and Zerubia, 1996) the operator marks a few points of a
road segment and an algorithm, e.g., based on dynamic
programming, finds the road which connects these points
(also in 3D for more than one image). This is advantageous
because the path of the road is more constrained, and a
more reliable handling of obstacles is possible. A simi-
lar approach based on so-called “ziplock” snakes is given
in (Neuenschwander et al., 1995). These semi-automatic
approaches can be extended to fully automatic operation
by means of automatic seed point detection (Zlotnick and
Carnine, 1993). A fully automatic approach is presented
in (Barzohar and Cooper, 1996). Stochastic methods are
used to find seeds for road extraction. Roads are found by
dynamic programming based on a grey level model and on
assumptions about the geometry of roads.

Road extraction is simpler if prior information is available.
In an extreme case, the road given in a geographic infor-
mation system (GIS) is verified only. This can be done by
using steered anisotropic filters for the extraction of edges
(Plietker, 1994) or by the analysis of profiles perpendicular
to the road (Wiedemann and Mayer, 1996). One step fur-
ther is taken in (de Gunst and Vosselman, 1997). Here the

old GIS data is not only verified but anomalies in the verifi-
cation are used to guide the search for new roads branching
from the given roads.

If relations between roads and other objects, like cars,
buildings, or trees, are neglected, a reliable extraction is
often difficult. Background objects can have a strong in-
fluence on the characteristics of roads, or at least on the
appearance of roads in aerial imagery. Consider for in-
stance high objects like trees causing occlusions or casting
shadows. In (Ruskoné, 1996), one of the most advanced
approaches for road extraction so far is presented, which
makes strong use of this contextual information to guide
the extraction in complex scenes. The centers and direc-
tion of elongated regions found by a watershed-based seg-
mentation on a gradient image are the seed points for the
extraction of road segments by tracking the homogeneity of
the road surface. By taking into account geometrical con-
straints, the road segments are connected, and the result
is the road network. The road network is split up into short
pieces which are classified into the so-called local contexts
“road”, “crossing”, “shadow”, “tree”, and “field” according
to several criteria concerning, e.g., the average grey value,
or the straightness. The local contexts are validated in a
second step. In urban areas, where profile matching or
detection of roadsides would probably fail, this is for in-
stance done by means of the detection and grouping of
cars. (Ruskoné, 1996) is maybe the work closest to the one
presented in this paper. (Bordes et al., 1997) analyze the
influence of context on the ease of extraction of roads. Ba-
sically, three different kinds of contexts were distinguished:
“rural”, “forest” and “urban”. Additionally, a distinction is
made between different characteristics of the roads, like
their type, and it is analyzed whether other linear objects
like railways or rivers are running parallel to the road which
might result in a misinterpretation. All this information is
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used to decide which segments should be verified first and,
what is more, also which algorithm should be used for ex-
traction.

This paper follows the work presented in (Baumgartner et
al., 1997b), which essentially uses context information and
multiple scales, based on the experience that distinct char-
acteristics of roads can be detected best at different scales
and in different contexts. Basically, multiple scales are used
to model detailed information of fine scale, like the mark-
ings, as well as abstract information of coarse scale, like
the road network. When fusing multiple scales, on the one
hand, the abstract information is used to focus the extrac-
tion of the details. This avoids getting lost in the plethora of
features in an image. On the other hand, details like mark-
ings can give very reliable evidence for a road.

The multi-scale modeling is complemented by context infor-
mation which is divided into local context sketches, like oc-
clusion shadow, which is modeling a tree casting a shadow
on the road, and global context regions, i.e., open rural,
suburb urban, and forest areas, which comprise the whole
image. The context sketches are related to the context re-
gions: The context sketch occlusion shadow for instance
belongs to the context region suburb urban. By this means
the complex model for the object road is split into more
specific sub-models which are adapted to the contextual
environment. The sub-models emphasize certain charac-
teristics of the objects and therefore can be regarded as
specialized models. An advantage of context regions is that
they can be used to focus the extraction: Road extraction
in open rural areas is easier and much more robust than in
suburb urban or in the forest. Thus, from the scale-space
behavior and the context of the road a strategy for the ex-
traction of the road can be deduced.

Up to now, snakes were mainly used for semi-automatic ex-
traction. In the scope of the work presented in this paper
they were found to show many advantages compared to the
grouping scheme used in previous work for automatic road
extraction (Baumgartner et al., 1997b). More specifically,
the results of the coarse scale line extraction were used as
the approximate centers for so-called ribbon-snakes used
to extract the road in fine scale. Especially the ability to
bridge gaps resulting from shadows cast on the road by
trees or buildings (context sketch occlusion shadow) is a
new and very important feature of this approach. The main
advantage of the snake for this application is that due to its
geometrical stabilization, it can make use of the little infor-
mation in the shadowed or short visible parts.

The paper proceeds as follows. In Section 2 the scale-
space behavior of roads is analyzed, and a model for the
extraction of roads is condensed from it. Section 3 defines
the context sketches and assigns them different context re-
gions. The model derived from scale-space behavior and
the context of the road is complemented with a strategy for
road extraction in Section 4. The snake-based approach
is presented in Section 5. After giving some basics for
snakes, the so-called ribbon snakes are introduced. Af-
ter distinguishing salient and non-salient roads, results for
road extraction are shown. The paper concludes with an
outlook in Section 6.

2 SCALE-SPACE BEHAVIOR

The appearance of roads in digital imagery depends on the
sensor’s spectral sensitivity and its resolution, i.e., inherent

scale in object space. The remainder of this paper is re-
stricted to grey-scale images, and only scale dependencies
are considered. Images with various scale exhibit different
characteristics of roads. In images with coarse scale, i.e.,
more than 2 m per pixel, roads mainly appear as lines es-
tablishing a more or less dense network. Opposed to this,
in images with a finer scale, i.e., less than 0.50 m, roads
are depicted as elongated homogeneous areas with more
or less parallel borders and almost constant width.

In a smoothed image, i.e., a coarser scale, lines represent-
ing road axes can be extracted in a stable manner even in
the presence of background objects like trees, buildings, or
cars. Smoothing an image is hereby closely linked to the
concept of “scale-space” for which (Lindeberg, 1994) gives
a good introduction. Figure 1(a) displays a bar shaped
bright line (= road) with a bright disturbance on the right
side (= bright car on the right lane) and its behavior in
scale-space for the line extraction model presented in (Ste-
ger, 1996). It is intuitively clear that only one line should
be detected for all levels of smoothing, i.e., scales σ, and
this is indeed the case. Figure 1(a) displays the line and
edge positions mapped onto the smoothed profiles, while
Figure 1(b) compares them to the corresponding positions
of an undisturbed profile (ideal position). For small σ the
extracted line position will be the one of the bright object,
while for large σ it will correspond to the center axis of the
line.

The outcome is that just by increasing the scale σ one can
eliminate the car from the road. It can also be seen that
the two edges corresponding to the bright object will vanish
along with the flat inflection points on the undisturbed part
of the line. As (Mayer and Steger, 1996) have shown, the
appropriate scale for line extraction can be computed if the
width of the line (=road) and of the disturbance (=car) as
well as the contrast between background, line, and distur-
bance is given. Seen from a symbolical point of view, in the
finer scale the substructure of the road (the car on the road
or also objects like markings) has been eliminated. This
can be interpreted as the abstraction, i.e., the increase of
the level of simplification and emphasis of the road. Ab-
straction is achieved simply by changing the scale of the
object.

From the last paragraph follows that fusion of coarse and
fine scale results can contribute to improve the reliability of
the road hypotheses. Additionally, details like road mark-
ings, which can be recognized at a resolution of less than
0.25 m, can be used as evidence to corroborate the de-
tected road hypotheses. On the one hand, using multi-
ple scales improves the robustness of road extraction. On
the other hand, it results in the necessity to use different
features at each scale, and to simultaneously combine all
features of all scales into one road model. The seman-
tic network in Figure 2 illustrates a simplified road model
condensed from this (for a more complete model refer to
(Baumgartner et al., 1997a)).

The model is split into three levels, defining different points
of view. The real world level consists of the objects and
their relations on a natural language level. In fine scale
the road-segment is constructed of road-parts which in turn
comprise the pavement and the markings. The objects in
the real world level are connected to the objects in the ge-
ometry and material level by means of the concrete rela-
tion which connects concepts describing the same object
on different levels, i.e., from different points of view. The
geometry and material level is an intermediate level which
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Figure 1: Scale-space behavior of a line with a bright disturbance on it.

represents the three-dimensional shapes of objects as well
as their material (Tönjes, 1996). This level has the advan-
tage that it represents objects independently from sensor
characteristics and viewpoint, which is in contrast to the im-
age level.

Road-segments in coarse scale are linked to a mostly
straight bright line in the image level. In contrast to this, the
pavement of the fine scale is linked to the elongated bright
area in the image level via the elongated flat concrete of
asphalt area in the geometry and material level. The mark-
ings are related to bright lines via colored lines. Whereas
the fine scale gives detailed information, the coarse scale
adds global information. If the information of both levels is
fused, false hypotheses for roads are eliminated by using
the abstract coarse scale information, while integrating de-
tails from the fine scale, like the correct width of the roads.
With this, the advantages of both scales are merged.
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Figure 2: Road model: different scales and points of view

3 CONTEXT

Besides features which refer to the road itself, relations be-
tween roads and other so-called background objects, like
buildings, trees, and cars, are very important for the recog-
nition of objects. Background objects on the one hand sup-
port and on the other hand hinder road extraction.

The concept “context sketch” is introduced to describe typi-
cal relations between road objects and background objects.

The context sketch occlusion shadow consists of a hypo-
thetical road-part which connects two road-segments and
a high object next to the hypothetical road-part. Figure 3a)
illustrates an occlusion, and Figure 3b) a shadow cast onto
the road by a high object. The relation between roads
and parallel objects, like sidewalks and cycle-tracks, is de-
fined by the context sketch parallel object. Another context
sketch describes the relation between road-segments and
driveways to agricultural fields (rural driveway). There is a
small number of other basic context sketches which should
be enough to model most of the relations of roads to other
objects.

Of major importance for the usefulness of context sketches
is that they do not have to be taken always into account.
This is in contrast to approaches representing the whole
scene with one model (Matsuyama and Hwang, 1990).
The relevance of features and relations depends also on
the so-called global context. Roads in suburb urban areas
look quite different and have different relations than roads
in open rural or forest areas. Therefore, this paper pro-
poses to use different features and relations, i.e., context
sketches, not only at multiple scales but also within dif-
ferent context regions, for which suburb urban, forest, and
open rural areas are distinguished here. Information from
a GIS or a (pre-) segmentation of the image into these re-
gions provides global a priori information about the char-
acteristic features and their relations. For example, build-
ings in downtown areas are – in contrast to buildings in
open rural areas – very close and highly parallel to roads;
sidewalks and cycle-tracks are more likely to appear in sub-
urb urban areas; in open rural areas single trees and sin-
gle buildings might hinder extraction, whereas in forest re-
gions mainly shadows and occlusions pose problems. This
information about existence or proximity of background ob-
jects makes it possible to choose the most appropriate ex-
traction algorithm and to determine the meaning of distinct
road-parts and road-segments. The assignment of the con-
text sketches to context regions is shown in Figure 4.

In practice, the road is modeled with different semantic ob-
jects, like road-parts and road-segments, implemented as
C++classes. The ability of the objects to explicitly repre-
sent a specific area also facilitates looking for additional ev-
idence, e.g., road markings, which otherwise is very hard
to find.
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4 STRATEGY

From the scale-space behavior of the roads and the model
for their context the following strategy for their extraction
can be deduced. It is based on the principle “hypothesize
and test”, and focuses on single objects (“local feature fo-
cus” (Grimson, 1990)) by postulating that the focus should
consider:

• Object is easy to extract

• Object can be extracted with high confidence

• Object has a big importance for the overall extraction

The resulting strategy is (Baumgartner et al., 1997a):

1. Start extraction in open rural area

2. Extract hypotheses for roads in coarse scale

3. Extract roads in fine scale; verify by means of markings
or cars

4. Expansion of the road-network by a complex interac-
tion of

(a) Closing gaps based on local context

(b) Propagation of the network in other global con-
texts

For the expansion of the network in 4. (Steger et al., 1997)
show an approach which uses the information of the whole
network to find out which parts should be connected.

In the next Section a snake-based approach is presented
which not only gives good results for the extraction of roads
but also gives a means to bridge the gaps caused by small
occlusions or by shadows cast on the roads.

5 SNAKES

This Section is based on results from (Laptev, 1997), where
details of the approach can be found.

5.1 Basics of Snakes

The concept “snake”, also called “active contour model”
was originally introduced in (Kass et al., 1987). It combines
internal smoothness constraints like bending of a curve with
image forces like the gradient. This idea can be repre-
sented as a sum of its energies

E(~v) = Eimg(~v) + Eint(~v) + Eext(~v), (1)

where Eint represents the internal energy, Eimg the image
energy and Eext the external forces. The position of the
snake where all these forces compensate each other cor-
responds to the local minimum of the snake’s total energy
E. Thus, the problem of the optimization of the snake’s
position is equivalent to the minimization of its energy.

The image energy of the snake can be defined as:

Eimg(~v) = −
1∫

0

P (~v(s, t))ds, (2)

where P (~v(s, t)) is a function with high values correspond-
ing to the features of interest. When attracting the snake
to edges in images, P (~v(s, t)) is usually taken equal to the
magnitude of the image gradient, that is

P (~v(s, t)) = |∇I(~v(s, t))|, (3)

where I(~v(s, t)) is the raw image or – more often – the im-
age convolved with the Gaussian kernel. The convolution
with Gaussian kernel smoothes the image and removes
disturbances which prevent the snake from moving toward
the positions with lower image energy corresponding to the
more salient image features.

The internal energy makes it possible to introduce geomet-
ric constraints on the shape of the snake. It can be defined
as

Eint(~v) =
1

2

1∫

0

α(s)
∣∣∣∂~v(s, t)

∂s

∣∣∣2 + β(s)
∣∣∣∂2~v(s, t)

∂s2

∣∣∣2ds, (4)
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where α(s) and β(s) are arbitrary functions that control the
snake’s tension and rigidity. The constraint on tension is
introduced by the first order term and makes the snake act
like a membrane. The rigidity is constrained by the second
order term and makes the snake act like a thin plate.

In order to find the optimal position for the snake, its energy
has to be minimized. According to the variational calculus
this must be a solution to the Euler-Lagrange differential
equation of motion. When choosing a particular deforma-
tion energy the differential equation controling the motion
of the snake becomes linear and can be separated. This
has the advantage of solving one optimization step in linear
time. For the actual implementation the equations have to
be discretized. For details of this refer to (Laptev, 1997).

5.2 Ribbon Snakes

The goal of this paper is to extract roads, i.e., linear fea-
tures with significant width. They can be modeled by rib-
bons whose sides correspond to the features’ boundaries.
Using ribbon snakes, linear features can be extracted by
optimizing the position and the width of the ribbon. In or-
der to represent ribbon snakes, the parametric curve ~v(s, t)
can be augmented by the third component w(s, t) (Fua and
Leclerc, 1990):

~v(s, t) = (x(s, t), y(s, t), w(s, t)), (0 ≤ s ≤ 1), (5)

Such representation implies that each slice of the ribbon
snake ~v(s0, t0) is characterized by its width 2w(s0, t0) and
the location of its center (x(s0, t0), y(s0, t0)). All center
points compose the centerline of the ribbon (cf. Figure 5
(a)).

In order to perform the optimization of the ribbon snake, the
forces which act on it have to be defined. The advantage
of the ribbon’s representation in equation (5) is that the ex-
pression for the snake’s internal energy Eint can be directly
used for ribbon snakes. Doing so, the width of ribbons will
be constrained by tension and rigidity in the same way as
the two coordinate components. The internal forces which
act on the ribbon snake will on the one hand constrain rib-
bon’s centerline to be a smooth curve. On the other hand,
they will control the distance between the ribbon’s sides,
forcing the sides to be parallel.

In contrast to the original snakes, the image information for
ribbon snakes has to be taken into account not at the center
of the curve (x(s, t), y(s, t)), but at the ribbon’s left and right
sides. As shown in Figure 5 (a), for each slice of the ribbon
~v(s0, t0) there exist two points ~vL(s0, t0) and ~vR(s0, t0) cor-
responding to the ribbon’s left and right sides. The position
of these points composing the ribbon’s boundaries ~vL(s, t)
and ~vR(s, t) can be expressed as

~vR(s, t) = w(s, t)~n(s, t)

~vL(s, t) = −w(s, t)~n(s, t), (6)

where ~n(s, t) is the unit normal vector of the ribbon’s cen-
terline (cf. Figure 5 (b)). Adapting the expression for image
energy Eimg in equation (2) to ribbon snakes, the function
P (~v(s, t)) in equation (3) has to be redefined. Requiring the
image contrast to be large along the left and the right side
of the ribbon, P can be defined as the sum of the image
gradient magnitudes on the left and right ribbon sides:

P (~v(s, t)) = |∇I(~vR(s, t))| + |∇I(~vL(s, t))| (7)

0v(1,t )

v(0,t )0

0 0
w(s ,t )

0 00 0
(x(s ,t ),y(s ,t ))

0 0
v (s ,t )

R

0 0
v (s ,t )

L

0 0
v(s ,t )

(a)

I(v (s ,t ))L 0 0

00n(s ,t )

I(v (s ,t ))0 0R

(b)

Figure 5: (a) Parametric representation of the rib-
bon snake. Each slice ~v(s0, t0) is identified by center
(x(s0, t0), y(s0, t0)) and width 2w(s0, t0). (b) Image gradi-
ents for the two sides of the ribbon and their projection onto
the ribbon’s unit normal vector ~n(s0, t0).

However, when searching for linear features which are
known to be brighter or darker than their surroundings, the
result of the extraction can be improved if the direction of
image gradients at the left and right sides of the ribbon will
be taken into consideration, too. For example, the extrac-
tion of bright linear features implies that the image inten-
sity at the ribbon sides has to change from dark to bright
at the left ribbon side and from bright to dark at its right
side (cf. Figure 5 (b)). This is equivalent to demanding the
projection of image gradient on the vector ~n(s, t) to be neg-
ative along the ribbon’s left side ~vL(s, t) and positive along
its right side ~vR(s, t). Taking this into account, the function
P (~v(s, t)) can be redefined as

P (~v(s, t)) = (∇I(~vL(s, t)) −∇I(~vR(s, t))) · ~n(s, t). (8)

5.3 Salient and Non-Salient Roads

Up to this point, only a means to extract the road in the fine
scale (i.e., point number 3. in Section 4), when a good ap-
proximation of the road is already there, was presented. To
automatically extract roads the prerequisite is an approxi-
mation of the road. However, as given by point number 2. in
Section 4, this can be gained from line extraction in coarse
scale (Steger, 1996). Figure 6 (a) presents the result of
line extraction and Figure 6 (b) the result of optimization of
the ribbon snake. The center of the ribbon snake was ini-
tialized with the center of the line and the width was set to
0. Then the ribbon snake was optimized with an external
force pushing the sides outwards. Whereas Figure 6 (b) is
considered to have a good constancy of the width and is
therefore accepted as a so-called salient road, Figure 6 (c)
shows a great variation of the width and is therefore not
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(a) (b) (c) (d) (e)

Figure 7: Optimization of ribbon snakes at a correctly hypothesized non-salient road. (a)-(c) Optimization of ziplock
ribbon with constant width and fixed end points. White lines indicate passive part. (d)+(e) Optimization of the ribbon’s width
with fixed centerline

(a) (b) (c)

Figure 6: Optimization of ribbon snakes initialized at the
centerlines of hypothesized roads. (a) centerlines (b) con-
stant width ⇒ salient road (c) no constant width ⇒ non-
salient road or no road at all

accepted as a road.

When all salient roads have been extracted, in most cases
smaller or larger parts of the road-network are still miss-
ing. To find further parts of the network so-called non-
salient roads are introduced. They are extracted as fol-
lows: The starting points are always two ends of salient
roads for which a connection is hypothesized (cf. point num-
ber 4.(a) in Section 4). The hypotheses can be gener-
ated by the sophisticated algorithm of (Steger et al., 1997),
but in many cases a connection of nearby ends of salient
roads works as well. The two ends are connected by a
ribbon snake and are optimized using the ziplock principle
(Neuenschwander et al., 1995). This idea prevents that in
case the two endpoints of a snake are known and one opti-
mizes the whole snake at once the snake is stuck to distur-
bances in between. This is done by optimizing at first only
the parts close to the ends and then propagating this infor-
mation from both sides until the whole snake is optimized.
For locating non-salient roads this helps but is not enough,
and another strategy was found to be of major importance
(Laptev, 1997): with the ziplock snake only the center of
the road is optimized. The width is taken to be constant
and equal to the average of the width of the two salient
roads. Then in a second step the centers are fixed and
only the width is optimized. Non-salient roads can again
be distinguished from other objects by the constancy of the
width (cf. Figures 7 and 8). Whereas in Figure 7 the width is
relatively constant, and therefore the hypotheses of a non-
salient road is accepted, in Figure 8 it is not.

In Figure 9 the result for a larger image combining the ex-
traction of salient and non-salient roads is given. The ap-
proach is able to bridge not only short gaps caused by sin-

(a) (b)

Figure 8: Optimization of ribbon snakes at a wrongly hy-
pothesized non-salient road. (a) Optimization of the zi-
plock ribbon between given ends of salient roads. (b) The
result of the expansion of the ribbon’s width.

gle trees casting shadows on the road (cf. left part of the
image) but also longer gaps like the one close to the build-
ing in the lower left part of the image. This shows that it is
possible to bridge the gaps modeled by the context sketch
occlusion shadow. An even better example for this is pre-
sented in Figure 10, where a long shadowed part is bridged
by a non-salient road.

6 CONCLUSIONS

This paper has shown three basic components which are
useful for the extraction of roads from aerial imagery: Mod-
eling of scale-behavior and of context as well as the extrac-
tion in fine scale by means of ribbon snakes. Results for the
combination of scale-behavior with the snakes have shown
quite satisfactory results.

Nevertheless there still is much to be done. Right now de-
velopment is on its way to also integrate the context infor-
mation. This is of big importance as only a serious analysis
of the causes of gaps can be the basis for a reliable bridg-
ing. As occlusions and shadows are caused by the three-
dimensional extent of objects, this has to be integrated. Re-
sults in (Eckstein and Steger, 1996) show that it is possi-
ble to predict shadows and to segment them in the image
based on results from surface reconstruction. Similarly, oc-
clusions can be predicted.
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Figure 9: Salient and non-salient roads for a larger image

(a) (b)

Figure 10: (a) Salient and (b) non-salient roads for a shadowed part

To make the extraction of roads more reliable and make it
work in different contexts, the fusion of different informa-
tion or techniques is necessary. A deficiency of the ap-
proach presented here is for instance the recognition of
cars (Ruskoné et al., 1996). Also the handling of more com-
plicated crossings is an issue which still has to be solved.
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O., 1995. From Ziplock Snakes to VelcroTM Surfaces.
In: Automatic Extraction of Man-Made Objects from Aerial
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