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Abstract

The extraction of curvilinear structures is an important
low-level operation in computer vision. Most existing oper-
ators use a simple model for the line that is to be extracted,
i.e., they do not take into account the surroundings of a line.
Therefore, they will estimate a wrong line position when-
ever a line with different lateral contrast is extracted. In
contrast, the algorithm proposed in this paper uses an ex-
plicit model for lines and their surroundings. By analyzing
the scale-space behavior of a model line profile, it is shown
how the bias that is induced by asymmetrical lines can be
removed. Thus, the algorithm is able to extract an unbiased
line position and width, both with sub-pixel accuracy.

1. Introduction

Extracting curvilinear structures, often simply called
lines, in digital images is an important low-level operation
in computer vision that has many applications. In pho-
togrammetric and remote sensing tasks it can be used to
extract linear features, including roads, railroads, or rivers,
from satellite or low resolution aerial imagery, which can
be used for the capture or update of data for geographic
information systems [1]. In addition, it is useful in medi-
cal imaging for the extraction of anatomical features, e.g.,
blood vessels from an X-ray angiogram [3].

The published schemes for line detection can be clas-
sified into two categories. For a detailed review of these
methods see [14]. The first approach is to regard lines as
objects having parallel edges [8, 5], and to extract them by
combining the output of two specially tuned edge filters. By
iteration in scale-space, lines of arbitrary widths can be de-
tected, but only with limited width resolution. Furthermore,
the approach is computationally very expensive.

The second approach is to regard the image as a function
z(x, y) and extract lines from it by using various differen-
tial geometric properties of this function. The basic idea
behind these algorithms is to locate the positions of ridges

and ravines in the image function. These methods can be
further divided according to which property they use.

In the first sub-category, ridges are found at points where
one of the principal curvatures of the image function as-
sumes a local maximum [10, 4]. For lines with a flat profile
it has the problem that two separate points of maximum cur-
vature symmetric to the true line position will be found [4].

In the second sub-category, ridges and ravines are de-
tected by locally approximating the image function by its
second or third order Taylor polynomial. The coefficients
of this polynomial are usually determined by using the facet
model, i.e., by a least squares fit of the polynomial to the
image data over a window of a certain size [2, 15, 6] or by
using derivatives of Gaussian masks [9, 4]. The approaches
using the facet model have the problem that only lines of
a certain width can be extracted [14], while the Gaussian
masks can be tuned for a certain line width by selecting an
appropriateσ. It is also possible to select the appropriate
σ for each image point by iterating through scale space [9].
However, since the surroundings of the line are not modeled
the extracted line position becomes progressively inaccurate
asσ increases.

Very few approaches to line detection consider the task
of extracting the line width along with the line position.
Most of them do this by an iteration through scale-space
while selecting the scale, i.e., theσ, that yields the max-
imum value to a certain scale-normalized response as the
line width [8, 9]. However, this is computationally very
expensive, especially if one is only interested in lines in
a certain range of widths. Furthermore, these approaches
will only yield a relatively rough estimate of the line width
since, by necessity, the scale-space is quantized in rather
coarse intervals. Finally, the scale-space analysis presented
in this paper shows that the position of the extracted line
will generally be biased for the optimum scaleσ. A differ-
ent approach is given in [2], where lines and edges are ex-
tracted in one simultaneous operation. For each line point
two corresponding edge points are matched from the result-
ing description. This approach has the advantage that lines

1



and their corresponding edges can in principle be extracted
with sub-pixel accuracy. However, since the approach does
not use an explicit model for a line, the location of the cor-
responding edge of a line is often not meaningful because
the interaction between a line and its corresponding edges
is neglected.

2. Detection of Line Points

2.1. Models for Line Profiles in 1D

Many approaches to line detection consider lines in 1D
to be bar-shaped, i.e., the ideal line of width2w and height
h is assumed to have a profile given by

fb(x) =
{

h, |x| ≤ w
0, |x| > w .

(1)

However, the assumption that lines have the same contrast
on both sides is rarely true for real images. Therefore, asy-
metrical bar-shaped lines

fa(x) =




0, x < −w
1, |x| ≤ w
a, x > w .

(2)

(a ∈ [0, 1]) are considered as the most common line profile
in this paper. General lines of heighth can be obtained by
considering a scaled asymmetrical profile, i.e.,hfa(x).

2.2. Detection of Line Profiles in 1D

The approach to extract individual line points has been
described in [12, 14]. Therefore, only a brief summary of
the approach as far as they are relevant to the rest of the
paper are given here. In order to detect lines with a profile
given by (1) or (2) the image should be convolved with the
derivatives of the Gaussian kernel. For the symmetrical bar-
shaped profile (1) this leads to the following description of
the behavior of the derivatives in scale-space:

rb(x, σ, w, h) = h(φσ(x + w) − φσ(x − w)) (3)

r′b(x, σ, w, h) = h(gσ(x + w) − gσ(x − w)) (4)

r′′b (x, σ, w, h) = h(g′σ(x + w) − g′σ(x − w)) , (5)

wheregσ(x) = 1√
2πσ

exp(− x2

2σ2 ) is the Gaussian with stan-

dard deviationσ, andφσ(x) is its integral.
In order to detect line points it is sufficient to determine

the points wherer′b(x, σ, w, h) vanishes. However, in or-
der to select only salient lines, the magnitude of the second
derivativer′′b (x, σ, w, h) in the point wherer′b(x, σ, w, h) =
0 should be significantly different from0. When the scale-
space behavior ofr′′b (x, σ, w, h) is analyzed it can be seen
that

σ ≥ w/
√

3 (6)

has to be observed in order for the line point extraction to
be reliable for lines of a width smaller than2w [12, 14].

From (1) and (4) it is also evident that a line is bounded
by an edge on each side of the line. Hence, to detect the line
width the edge points to the left and right of the line point
need to be extracted [13, 14]. Their position is given by the
solutions ofr′′b (x, σ, w, h) = 0, wherer′′′b (x, σ, w, h) < 0,
i.e., the points that exhibit a maximum in the absolute value
of the gradient.

2.3. Detection of Lines in 2D

The method to extract individual line points in 2D has
been detailed in [12, 14]. Again, only a brief summary
is given. Curvilinear structures in 2D can be modeled as
curvess(t) that exhibit the characteristic 1D line profilefa

in the direction perpendicular to the line, i.e., perpendicular
to s′(t). Let this direction ben(t). This means that the first
directional derivative in the directionn(t) should vanish and
the second directional derivative should be of large absolute
value. The directionn(t) can be determined by calculat-
ing the eigenvalues and eigenvectors of the Hessian matrix
H(x, y) of the image after convolution with the appropriate
derivatives of the 2D Gaussian kernel. The extraction can
be done with sub-pixel accuracy.

To detect the width of the line, for each line point the
closest points in the image to the left and to the right of the
line point, i.e., along−n andn, where the absolute value
of the gradient takes on its maximum value need to be de-
termined. Equation (6) shows that it is sensible to search
for edges only in a restricted neighborhood of the line. Ide-
ally, the maximum distance for the search would be

√
3σ.

In order to ensure that most of the edge points are detected,
the current implementation uses a slightly larger maximum
distance of2.5σ [13, 14].

An important issue is what the algorithm should do when
it is unable to locate an edge point for a given line point.
This might happen, for example, if there is a very weak and
wide gradient next to the line, which does not exhibit a well
defined maximum. Another case where this typically hap-
pens are the junction areas of lines, where the line width
usually grows beyond the range of2.5σ. A good solution to
this problem is to interpolate or extrapolate the line width
from neighboring line points [14].

2.4. Examples

Figure 1(b) displays the results of the line extraction al-
gorithm for the image of Fig. 1(a). This image is fairly
good-natured in the sense that the lines it contains are rather
symmetrical. From Fig. 1(a) it can be seen that the algo-
rithm is able to locate the edges of the wider line with very
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(a) Aerial image (b) Detected lines and width

Figure 1. Lines and their width detected (b)
in an aerial image (a). Lines are displayed in
white while the corresponding edges are dis-
played in black.

(a) Aerial image (b) Detected lines and width

Figure 2. Lines and their width detected (b) in
an aerial image (a).

high precision. The only place where the edges do not cor-
respond to the semantic edges of the road object are in the
bottom part of the image, where nearby vegetation causes a
strong gradient and causes the algorithm to estimate the line
width too large. Please note that the width of the narrower
line is extracted slightly too large. How to remove this ef-
fect is the topic of Section 3. A final thing to note is that the
algorithm extrapolates the line width in the junction area in
the middle of the image, as discussed in Section 2.3. This
explains the seemingly unjustified edge points in this area.

Figure 2(b) exhibits the results of the proposed approach
on another aerial image of the same ground resolution (1 m),
given in Fig. 2(a). Please note that the line in the upper part
of the image contains a very asymmetrical part in the center
part of the line due to shadows of nearby objects. Therefore,
the line position is shifted towards the edge of the line that
posesses the weaker gradient, i.e., the upper edge in this
case. Please note also that the line and edge positions are
very accurate in the rest of the image.

The next Section will explore the cause for the shift in
line position and for the above mentioned problem of ex-
tracting a too large line width.
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Figure 3. Location of a line with width w ∈
[0, 4] and its edges for σ = 1.

3. Removing the Bias from Asymmetric Lines

3.1. Reasons for Bias in Line Position and Width

Let us first consider the reason why the line width of nar-
row lines will be estimated too large for symmetrical bar-
shaped profiles. Equations (4) and (5) can be used to derive
how the edges of a line will behave in scale-space. Since
this analysis involves equations which cannot be solved an-
alytically, the calculations must be done using a root finding
algorithm [11]. Figure 3 shows the location of the line and
its corresponding edges forw ∈ [0, 4] andσ = 1. Note that
the ideal edge positions are given byx = ±w. From (5) it
is apparent that the edges of a line can never move closer
thanσ to the real line, and thus the width of the line will be
estimated significantly too large for narrow lines.

By far the greater problem is the bias in the extracted line
position for asymmetrical lines given by (2). The responses
to this kind of profile are given by:

ra(x, σ, w, a) = φσ(x + w) + (a − 1)φσ(x − w)(7)

r′a(x, σ, w, a) = gσ(x + w) + (a − 1)gσ(x − w) (8)

r′′a (x, σ, w, a) = g′σ(x + w) + (a − 1)g′σ(x − w).(9)

The location wherer′a(x, σ, w, a) = 0, i.e., the position of
the line, is

l = − σ2

2w
ln(1 − a) . (10)

This means that the line will be estimated in a wrong posi-
tion whenever the contrast is significantly different on both
sides of the line. The estimated position of the line will be
within the actual boundaries of the line as long as

a ≤ 1 − e−
2w2

σ2 . (11)

The location of the corresponding edges can again only be
computed numerically. Figure 4 gives an example of the
line and edge positions forw = 1, σ = 1, anda ∈ [0, 1].
It can be seen that the position of the line and the edges is
greatly influenced by line asymmetry. Asa gets larger the
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Figure 4. Location of an asymmetrical line
and its corresponding edges with width w =
1, σ = 1, and a ∈ [0, 1].

line and edge positions are pushed to the weak side, i.e., the
side that posseses the smaller edge gradient.

Note that (10) gives an explicit formula for the bias of
the line extractor. Suppose that we kneww anda for each
line point. Then it would be possible to remove the bias
from the line detection algorithm by shifting the line back
into its proper position.

It is apparent from this analysis that failure to model
the surroundings of a line, i.e., the asymmetry of its edges,
can result in large errors of the estimated line position and
width. Algorithms that fail to take this into account will not
return meaningful results.

3.2. Detailed Analysis of Asymmetrical Line Pro-
files

Recall from the discussion above that if the algorithm
knew the true values ofw anda it could remove the bias in
the estimation of the line position and width. Equations (7)–
(9) give an explict scale-space description of the asymmet-
rical line profilefa. The positionl of the line can be de-
termined analytically by the zero-crossings ofr′a(x, σ, w, a)
and is given in (10). The total width of the line, as measured
from the left to right edge, is given by the zero-crossings of
r′′a(x, σ, w, a). Unfortunately, these positions can only be
computed by a root finding algorithm since the equations
cannot be solved analytically. Let us call these positionsel

ander. Then the width to the left and right of the line is
given byvl = l − el andvr = er − l. The total width of
the line isv = vl + vr. The values ofl, el, ander form
a scale-invariant system. This means that if bothσ andw
are scaled by the same constant factorc the line and edge
locations will be given bycl, cel, andcer (for a proof see
[14]). Hence,w andσ are not independent of each other.
In fact, we only need to consider allw for one particularσ,
e.g.,σ = 1. Therefore, for the following analysis we only
need to discuss values that are normalized with regard to
the scaleσ, i.e.,wσ = w/σ, vσ = v/σ, and so on. A use-
ful consequence is that the behavior offa can be analyzed
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Figure 5. Predicted behavior of the asymmet-
rical line fa for wσ ∈ [0, 3] and a ∈ [0, 1]. (a)
Predicted line width vσ. (b) Predicted gradi-
ent ratio r.

for σ = 1. All other values can be obtained by a simple
multiplication by the actual scaleσ.

With all this being established, the predicted total line
width vσ can be calculated for allwσ anda ∈ [0, 1]. Fig-
ure 5 displays the predictedvσ for wσ ∈ [0, 3]. Obviously,
vσ grows without bounds forwσ ↓ 0 or a ↑ 1. Furthermore,
it can be proved thatvσ ∈ [2,∞]. Therefore, in Fig. 5 the
contour lines forvσ ∈ [2, 6] are also displayed.

Section 2.3 gave a procedure to extract the quantityvσ

from the image. This is half of the information required
to get to the true values ofw and a. However, an ad-
ditional quantity is needed to estimatea. Since the true
height h of the line profilehfa is unknown this quan-
tity needs to be independent ofh. One such quantity is
the ratio of the gradient magnitude ater and el, i.e., the
weak and strong side. This quantity is given byr =
|r′a(er, σ, w, a)|/|r′a(el, σ, w, a)|. It is obvious that the in-
fluence ofh cancels out. Furthermore, it is easy to see that
r also remains constant under simultaneous scalings ofσ
andw. The quantityr has the advantage that it is easy to
extract from the image. Figure 5 displays the predictedr
for wσ ∈ [0, 3]. It is obvious thatr ∈ [0, 1]. Therefore, the
contour lines forr in this range are displayed in Figure 5
as well. It can be seen that for largewσ, r is very close to
1 − a. For smallwσ it will drop to near-zero for alla.
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3.3. Inversion of the Bias Function

The discussion above can be summarized as follows:
The true values ofwσ anda are mapped to the quantities
vσ andr, which are observable from the image. More for-
mally, there is a functionf : (wσ , a) ∈ [0,∞] × [0, 1] 7→
(vσ, r) ∈ [2,∞]× [0, 1]. From the discussion in Section 2.3
it follows that it is only useful to considervσ ∈ [0, 5]. How-
ever, for very smallσ it is possible that an edge point will be
found within a pixel in which the center of the pixel is less
than2.5σ from the line point, but the edge point is farther
away than this. Therefore,vσ ∈ [0, 6] is a good restriction
for vσ. Since the algorithm needs to determine the true val-
ues(wσ , a) from the observed(vσ, r), the inversef−1 of
the mapf has to be determined. Fortunately,f is invertible
for all vσ andr [14].

To calculatef−1, a multi-dimensional root finding algo-
rithm has to be used [11]. To obtain maximum precision
for wσ anda, this root finding algorithm would have to be
called at each line point. This is undesirable for two rea-
sons. Firstly, it is a computationally expensive operation.
More importantly, however, due to the nature of the func-
tion f , very good starting values are required for the algo-
rithm to converge, especially for smallvσ. Therefore, the
inversef−1 is computed for selected values ofvσ andr and
the true values are obtained by interpolation. The step size
of vσ was chosen as0.1, while r was sampled at0.05 in-
tervals. Figure 6 shows the true values ofwσ anda for any
givenvσ andr. It can be seen that despite the fact thatf
is very ill-behaved for smallwσ, f−1 is quite well-behaved.
This behavior leads to the conclusion that linear interpola-
tion can be used to obtain good values forwσ anda.

One final important detail is how the algorithm should
handle line points wherevσ < 2, i.e., wheref−1 is unde-
fined. This can happen, for example, because there are two
lines very close to each other. In this case the edge points
cannot move as far outward as the model predicts. If this
happens, the line point will have an undefined width. These
cases can be handled by interpolation, similar to the case of
missing edge points in Section 2.3.

With all this information calculated it is now a simple
matter to calculate the true contrasth of the line. It is given
by the ratio of predicted responser′′a according to (9) and
the observed responser′′ in the image:

h =
r′′

r′′a (l, σ, w, a)
, (12)

wherel is the line position according to (10). In order to
achieve maximum accuracy,r′′ has to be determined with
sub-pixel precision from the image by interpolation.
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Figure 6. True values of the line width wσ (a)
and the asymmetry a (b).

3.4. Examples

Figure 7 shows how the bias removal algorithm is able
to succesfully adjust the line widths in the aerial image of
Fig. 1. Please note from Fig. 7(a) that because the lines in
this image are fairly symmetrical, the line positions have
been adjusted only minimally. Furthermore, it can be seen
that the line widths correspond much better to the true line
widths. Figure 7(b) shows a four times enlarged part of the
results superimposed onto the image in its original ground
resolution of 0.25 m, i.e., four times the resolution in which
the line extraction was carried out. For most of the lines
the edges are well within one pixel of the edge in the larger
resolution. Figure 7(c) shows the same detail without the re-
moval of the bias. In this case, the extracted edges are about
2–4 pixels from their true locations. The bottom part of
Fig. 7(a) shows that sometimes the bias removal can make
the location of one edge worse in favor of improving the lo-
cation of the other edge. However, the position of the line
is affected only slightly.

Figure 8 shows the results of removing the bias from the
test image of Fig. 2. Please note that in the areas of the
image where the line is highly asymmetrical the line and
edge locations are much improved. In fact, for a very large
part of the road the line position is within one pixel of the
road markings in the center of the road in the high resolu-
tion image. Again, a four times enlarged detail is shown
in Fig. 8(b). If this is compared to the detail in Fig. 8(c)
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(a) Lines detected with bias removal (b) Detail of (a) (c) Detail of (a) without bias removal

Figure 7. Lines and their width detected (a) in an aerial image of resolution 1 m with the bias re-
moved. A four times enlarged detail (b) superimposed onto the original image of resolution 0.25 m.
(c) Comparison to the line extraction without bias removal.

the significant improvement in the line and edge locations
becomes apparent.

4. Conclusions

This paper has presented an approach to extract lines and
their widths with very high precision. A model for the most
common type of lines, the asymmetrical bar-shaped line,
was proposed. A scale-space analysis was carried out for
this model profile. This analysis shows that there is a strong
interaction between a line and its two corresponding edges
which cannot be ignored. The true line width influences the
line width occuring in an image, while asymmetry influ-
ences both the line width and its position. From this analy-
sis an algorithm to extract the line position and its width was
derived. This algorithm exhibits the bias that is predicted by
the model for the asymmetrical line. Therefore, a method
to remove this bias was proposed. The resulting algorithm
works very well for a range of images containing lines of
different widths and asymmetries, as was demonstrated by
a number of test images. High resolution versions of the
test images were used to check the validity of the obtained
results. They show that the proposed approach is able to
extract lines with very high precision from low resolution
images. The extracted line positions and edges correspond
to semantically meaningful entities in the image, e.g., road
center lines and roadsides or blood vessels [14]. The ap-
proach only uses the first and second directional derivatives
of an image for the extraction of the line points. No spe-
cialized directional filters are needed. The edge point ex-
traction is done by a localized search around the line points
already found using five very small masks. This makes the
approach computationally very efficient. For example, the

time to process an image of size 256× 256 is about 1.7
seconds on a HP 735 workstation.

The presented approach shows two fundamental limita-
tions. First of all, it can only be used to detect lines with
a certain range of widths, i.e., between0 and2.5σ. This is
a problem if the width of the important lines varies greatly
in the image. However, since the bias is removed by the
algorithm, one can in principle selectσ large enough to
cover all desired line widths and the algorithm will still
yield valid results. This will work if the narrow lines are
relatively salient. Otherwise they will be smoothed away
in scale-space. Of course, onceσ is selected so large that
neighboring lines will start to influence each other the line
model will fail and the results will deteriorate. Hence, in
reality there is a limited range in whichσ can be chosen to
yield good results. In most applications this is not a very
significant restriction since one is usually only interested in
lines in a certain range of widths. Furthermore, the algo-
rithm could be iterated through scale-space to extract lines
of very different widths. The second problem is that the
definition of salient lines is done via the second directional
derivatives. However, one can use semantically meaningful
values, i.e., the width and height of the line, to obtain the
desired thresholds [12, 14]. Therefore, the algorithm could
be modified to accept these parameters as thresholds, and
to compute appropriate thresholds for the second derivative
from them internally.

Finally, it should be stressed that the lines extracted are
not ridges in the topographic sense, i.e., they do not define
the way water runs downhill or accumulates [7]. In fact,
they are much more than a ridge in the sense that a ridge
can be regarded in isolation, while a line needs to model its
surroundings. If a ridge detection algorithm is used to ex-
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(a) Lines detected with bias removal (b) Detail of (a) (c) Detail of (a) without bias removal

Figure 8. Lines and their width detected (a) in an aerial image of resolution 1 m with the bias re-
moved. A four times enlarged detail (b) superimposed onto the original image of resolution 0.25 m.
(c) Comparison to the line extraction without bias removal.

tract lines, the asymmetry of the lines will invariably cause
it to return biased results.

Further work will concentrate on applying the technique
for modeling the bias in line position and width developed
in this paper to the case of lines with contrast of different
polarity, i.e., lines where the background is darker than the
line on one side of the line and brighter on the other side.
For this type of line qualitatively similar effects occur.
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