Removing the Bias from Line Detection
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Abstract and ravines in the image function. These methods can be
further divided according to which property they use.

The extraction of curvilinear structures is an important In the first sub-category, ridges are found at points where
low-level operation in computer vision. Most existing oper- one of the principal curvatures of the image function as-
ators use a simple model for the line that is to be extracted, sumes a local maximum [10, 4]. For lines with a flat profile
i.e., they do not take into account the surroundings of a line. it has the problem that two separate points of maximum cur-
Therefore, they will estimate a wrong line position when- vature symmetric to the true line position will be found [4].
ever a |ine W|th diﬁerent |atera| contrast iS eXtI’aCted. In In the Second Sub_category' ridges and ravines are de_
contrast, the algorithm proposed in this paper uses an ex- tected by locally approximating the image function by its
plicit model for lines and their surroundings. By analyzing second or third order Taylor polynomial. The coefficients
the scale-space behavior of a model line profile, it is shown of thjs polynomial are usually determined by using the facet
how the bias that is induced by asymmetrical lines can be model, i.e., by a least squares fit of the polynomial to the
removed. Thus, the algorithm is able to extract an unbiasedjmage data over a window of a certain size [2, 15, 6] or by

line position and width, both with sub-pixel accuracy. using derivatives of Gaussian masks [9, 4]. The approaches
using the facet model have the problem that only lines of
1. Introduction a certain width can be extracted [14], while the Gaussian

masks can be tuned for a certain line width by selecting an

Extracting curvilinear structures, often simply called appropriates. It is also possible to select the appropriate
lines, in digital images is an important low-level operation o for each image point by iterating through scale space [9].
in computer vision that has many applications. In pho- However, since the surroundings of the line are not modeled
togrammetric and remote sensing tasks it can be used tdhe extracted line position becomes progressively inaccurate
extract linear features, including roads, railroads, or rivers, aso increases.
from satellite or low resolution aerial imagery, which can Very few approaches to line detection consider the task
be used for the capture or update of data for geographicof extracting the line width along with the line position.
information systems [1]. In addition, it is useful in medi- Most of them do this by an iteration through scale-space
cal imaging for the extraction of anatomical features, e.g., while selecting the scale, i.e., the that yields the max-
blood vessels from an X-ray angiogram [3]. imum value to a certain scale-normalized response as the

The published schemes for line detection can be clas-line width [8, 9]. However, this is computationally very
sified into two categories. For a detailed review of these expensive, especially if one is only interested in lines in
methods see [14]. The first approach is to regard lines asa certain range of widths. Furthermore, these approaches
objects having parallel edges [8, 5], and to extract them bywill only yield a relatively rough estimate of the line width
combining the output of two specially tuned edge filters. By since, by necessity, the scale-space is quantized in rather
iteration in scale-space, lines of arbitrary widths can be de-coarse intervals. Finally, the scale-space analysis presented
tected, but only with limited width resolution. Furthermore, in this paper shows that the position of the extracted line
the approach is computationally very expensive. will generally be biased for the optimum scale A differ-

The second approach is to regard the image as a functiorent approach is given in [2], where lines and edges are ex-
z(x,y) and extract lines from it by using various differen- tracted in one simultaneous operation. For each line point
tial geometric properties of this function. The basic idea two corresponding edge points are matched from the result-
behind these algorithms is to locate the positions of ridgesing description. This approach has the advantage that lines



and their corresponding edges can in principle be extractedhas to be observed in order for the line point extraction to
with sub-pixel accuracy. However, since the approach doesbe reliable for lines of a width smaller thaw [12, 14].

not use an explicit model for a line, the location of the cor-  From (1) and (4) it is also evident that a line is bounded
responding edge of a line is often not meaningful becauseby an edge on each side of the line. Hence, to detect the line
the interaction between a line and its corresponding edgesvidth the edge points to the left and right of the line point

is neglected. need to be extracted [13, 14]. Their position is given by the
solutions ofr) (x, o, w, h) = 0, wherer}’(z, 0, w, h) < 0,
2. Detection of Line Points i.e., the points that exhibit a maximum in the absolute value

of the gradient.

2.1. Models for Line Profiles in 1D
2.3. Detection of Lines in 2D
Many approaches to line detection consider lines in 1D

to be bar-shaped, i.e., the ideal line of widtlh and height

: N The method to extract individual line points in 2D has
h is assumed to have a profile given by

been detailed in [12, 14]. Again, only a brief summary
h, |z|<w is given. Curvilinear structures in 2D can be modeled as
folw) = 0, |z|>w . 1) curvess(t) that exhibit the characteristic 1D line profifg
. ) in the direction perpendicular to the line, i.e., perpendicular
However, the assumption that lines have the same contrasfy /(¢). Let this direction bex(t). This means that the first
on both sides is rarely true for real images. Therefore, asy-gjrectional derivative in the directior(t) should vanish and

metrical bar-shaped lines the second directional derivative should be of large absolute
0, z<—w value. The directiom(t) can be determined by calculat-

fal@)={ 1, |z|<w ) ing the eigenvalues and eigenvectors of the Hessian matrix
a, T>w . H(z,y) of the image after convolution with the appropriate

derivatives of the 2D Gaussian kernel. The extraction can
(a € [0,1]) are considered as the most common line profile pe done with sub-pixel accuracy.

in this paper. General lines of heighitan be obtained by To detect the width of the line, for each line point the

considering a scaled asymmetrical profile, itf., (). closest points in the image to the left and to the right of the
) ) o line point, i.e., along-n andn, where the absolute value

2.2. Detection of Line Profiles in 1D of the gradient takes on its maximum value need to be de-

termined. Equation (6) shows that it is sensible to search
The approach to extract individual line points has been for edges only in a restricted neighborhood of the line. Ide-
described in [12, 14]. Therefore, only a brief summary of gjly, the maximum distance for the search would\5&s.
the approach as far as they are relevant to the rest of thqnp order to ensure that most of the edge points are detected,

paper are given here. In order to detect lines with a profile the current implementation uses a slightly larger maximum
given by (1) or (2) the image should be convolved with the gistance of.50 [13, 14].

derivatives of the Gaussian kernel. For the symmetrical bar-
shaped profile (1) this leads to the following description of
the behavior of the derivatives in scale-space:

An importantissue is what the algorithm should do when
it is unable to locate an edge point for a given line point.
This might happen, for example, if there is a very weak and
ro(z,0,w,h) = h(de(z +w) — de(z —w)) (3) wid.e gradien.t next to the line, which does not exhibit awell
(@ o wh) = hlge(z +w) — go(@—w)  (4) defined maximum. Another case where this typically hap-

,’; LR 7 7 pens are the junction areas of lines, where the line width
ry (@, 0w, h) = h(gy(x+w) —go(z —w)) , (5)  ysually grows beyond the rangedbo. A good solution to
this problem is to interpolate or extrapolate the line width
from neighboring line points [14].

1

whereg, () = ——— exp(—%) is the Gaussian with stan-
dard deviatiorr, and¢, () is its integral.

In order to detect line points it is sufficient to determine
the points where, (, o, w, h) vanishes. However, in or- 2.4. Examples
der to select only salient lines, the magnitude of the second
derivativer; (z, o, w, h) in the pointwhere, (z, o, w, h) = Figure 1(b) displays the results of the line extraction al-
0 should be significantly different frofh. When the scale-  gorithm for the image of Fig. 1(a). This image is fairly
space behavior af) (z, 0, w, h) is analyzed it can be seen good-natured in the sense that the lines it contains are rather
that symmetrical. From Fig. 1(a) it can be seen that the algo-

o> w/\/§ (6) rithm is able to locate the edges of the wider line with very
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(a) Aerial image

(b) Detected lines and width . . . . .
Figure 3. Location of a line with width w €

Figure 1. Lines and their width detected (b) [0,4] and its edges for o = 1.

in an aerial image (a). Lines are displayed in

white while the corresponding edges are dis- 3. Removing the Bias from Asymmetric Lines
played in black.

3.1. Reasons for Bias in Line Position and Width

Let us first consider the reason why the line width of nar-
row lines will be estimated too large for symmetrical bar-
shaped profiles. Equations (4) and (5) can be used to derive
how the edges of a line will behave in scale-space. Since
this analysis involves equations which cannot be solved an-
alytically, the calculations must be done using a root finding
= | algorithm [11]. Figure 3 shows the location of the line and

e gt its corresponding edges far € [0, 4] ando = 1. Note that
(b) Detected lines and width the ideal edge positions are given by= +w. From (5) it
is apparent that the edges of a line can never move closer
Figure 2. Lines and their width detected (b) in thano to the real line, and thus the width of the line will be
an aerial image (a). estimated significantly too large for narrow lines.
By far the greater problem is the bias in the extracted line
position for asymmetrical lines given by (2). The responses
high precision. The only place where the edges do not cor-to this kind of profile are given by:
respond to the semantic edges of the road object are in the

(a) Aerial image

bottom part of the image, where nearby vegetation causes a 7q(z,0,w,a) = ¢o(x+w)+ (a — 1)d,(x —w)(7)
strong gradientand causes the algorithmto estimate the line  ;/ (» 5,w,a) = g,(z+w) + (a — 1)gs(z — w) (8)
width too large. Please note that the width of the narrower Pz ow,a) = g (x4 w) + (a—1)g,(z — w).(9)

line is extracted slightly too large. How to remove this ef-
fectis the topic of Section 3. A final thing to note is that the The Iocation where’, (z, o, w,a) = 0, i.e., the position of
algorithm extrapolates the line width in the junction area in the Jine, is

the middle of the image, as discussed in Section 2.3. This o2

explains the seemingly unjustified edge points in this area. = “ow In(1—a) . (10)

Figure 2(b) exhibits the results of the proposed approachThis means that the line will be estimated in a wrong posi-
on another aerialimage of the same ground resolution (1 m).tion whenever the contrast is significantly different on both
givenin Fig. 2(a). Please note that the line in the upper partsjges of the line. The estimated position of the line will be

of the image contains a very asymmetrical part in the centeryyithin the actual boundaries of the line as long as
part of the line due to shadows of nearby objects. Therefore,
2

the line position is shifted towards the edge of the line that a<l—e 2 (11)

posesses the weaker gradient, i.e., the upper edge in this -

case. Please note also that the line and edge positions arghe |ocation of the corresponding edges can again only be

very accurate in the rest of the image. computed numerically. Figure 4 gives an example of the
The next Section will explore the cause for the shift in line and edge positions fav = 1, 0 = 1, anda € [0, 1].

line position and for the above mentioned problem of ex- It can be seen that the position of the line and the edges is

tracting a too large line width. greatly influenced by line asymmetry. Asgets larger the
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Figure 4. Location of an asymmetrical line
and its corresponding edges with width
1,0=1,and a € [0,1].

w =

line and edge positions are pushed to the weak side, i.e., the
side that posseses the smaller edge gradient.

Note that (10) gives an explicit formula for the bias of
the line extractor. Suppose that we knevanda for each
line point. Then it would be possible to remove the bias
from the line detection algorithm by shifting the line back
into its proper position.

It is apparent from this analysis that failure to model
the surroundings of a line, i.e., the asymmetry of its edges,
can result in large errors of the estimated line position and
width. Algorithms that fail to take this into account will not
return meaningful results.

(b) Predicted gradient ratio

Figure 5. Predicted behavior of the asymmet-
rical line f, for w, € [0,3] and a € [0,1]. (a)
Predicted line width v,. (b) Predicted gradi-
ent ratio r.

3.2. Detailed Analysis of Asymmetrical Line Pro-

files for o = 1. All other values can be obtained by a simple

multiplication by the actual scate

Recall from the discussion above that if the algorithm With all this beiﬂg established, the predicted total line

knew the true values af anda it could remove the biasin  Width v, can be calculated for alb, anda € [0,1]. Fig-
the estimation of the line position and width. Equations (7) U'e S displays the predicted for w, € [0,3]. Obviously,
(9) give an explict scale-space description of the asymmet-ve 9roWs without bounds fan, | 0 ora 1 1. Furthermore,
rical line profile f,. The position of the line can be de- It €&n be proved that, € [2,oc]. Therefore, in Fig. 5 the
termined analytically by the zero-crossings-bfz, o, w, a) contour lines fow, € [2, 6] are also displayed.

and is given in (10). The total width of the line, as measured  Section 2.3 gave a procedure to extract the quamntity
from the left to right edge, is given by the zero-crossings of from the image. This is half of the information required
r?(z,0,w,a). Unfortunately, these positions can only be to get to the true values af anda. However, an ad-
computed by a root finding algorithm since the equations ditional quantity is needed to estimate Since the true

cannot be solved analytically. Let us call these positigns
ande,. Then the width to the left and right of the line is
given byv; = | — ¢; andv, = e, — . The total width of
the line isv = v; + v,. The values of, ¢;, ande, form

height  of the line profilehf, is unknown this quan-
tity needs to be independent af One such quantity is
the ratio of the gradient magnitude gt ande;,, i.e., the

weak and strong side. This quantity is given hy=

|r! (er,0,w,a)|/|r) (er,0,w,a)|. Itis obvious that the in-
fluence ofh cancels out. Furthermore, it is easy to see that
r also remains constant under simultaneous scalings of
andw. The quantityr has the advantage that it is easy to

a scale-invariant system. This means that if bethndw
are scaled by the same constant faettie line and edge
locations will be given by, ce;, andce,. (for a proof see
[14]). Hence,w ando are not independent of each other.
In fact, we only need to consider all for one particular, extract from the image. Figure 5 displays the prediated
e.g.,0 = 1. Therefore, for the following analysis we only for w, € [0, 3]. Itis obvious that- € [0, 1]. Therefore, the
need to discuss values that are normalized with regard tocontour lines forr in this range are displayed in Figure 5
the scales, i.e.,w, = w/o, v, = v/o, and so on. Ause- as well. It can be seen that for largg, r is very close to
ful consequence is that the behaviorfgfcan be analyzed 1 — a. For smallw, it will drop to near-zero for alk.



3.3. Inversion of the Bias Function

The discussion above can be summarized as follows:

The true values ofv, anda are mapped to the quantities
v, andr, which are observable from the image. More for-
mally, there is a functiorf : (wy,a) € [0,00] x [0,1] —
(vo, 1) € [2,00] x [0, 1]. From the discussion in Section 2.3
it follows that it is only useful to considet, € [0, 5]. How-
ever, for very smalk it is possible that an edge point will be
found within a pixel in which the center of the pixel is less
than2.5¢ from the line point, but the edge point is farther
away than this. Therefore, € [0, 6] is a good restriction
for v,. Since the algorithm needs to determine the true val-
ues(w,,a) from the observedv,,r), the inversef ! of
the mapf has to be determined. Fortunatefyis invertible
for all v, andr [14].

To calculatef —!, a multi-dimensional root finding algo-
rithm has to be used [11]. To obtain maximum precision
for w, anda, this root finding algorithm would have to be
called at each line point. This is undesirable for two rea-
sons. Firstly, it is a computationally expensive operation.
More importantly, however, due to the nature of the func-
tion f, very good starting values are required for the algo-
rithm to converge, especially for smail.. Therefore, the
inversef —! is computed for selected valueswgfandr and
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(b) Truea

Figure 6. True values of the line width  w, (a)
and the asymmetry a (b).

3.4. Examples

the true values are obtained by interpolation. The step size

of v, was chosen a8.1, while » was sampled &b.05 in-
tervals. Figure 6 shows the true valuesgf anda for any
givenwv, andr. It can be seen that despite the fact tliat

is very ill-behaved for smatb,, f~! is quite well-behaved.
This behavior leads to the conclusion that linear interpola-
tion can be used to obtain good valuesdgranda.

Figure 7 shows how the bias removal algorithm is able
to succesfully adjust the line widths in the aerial image of
Fig. 1. Please note from Fig. 7(a) that because the lines in
this image are fairly symmetrical, the line positions have
been adjusted only minimally. Furthermore, it can be seen
that the line widths correspond much better to the true line

One final important detail is how the algorithm should widths. Figure 7(b) shows a four times enlarged part of the

handle line points where, < 2, i.e., wheref~! is unde-

results superimposed onto the image in its original ground

fined. This can happen, for example, because there are twaesolution of 0.25m, i.e., four times the resolution in which

lines very close to each other. In this case the edge pointdh€ line extraction was carried out. For most of the lines
cannot move as far outward as the model predicts. If this the edges are well within one pixel of the edge in the larger

happens, the line point will have an undefined width. These "€solution. Figure 7(c) shows the same detail without the re-
cases can be handled by interpolation, similar to the case of0val of the bias. In this case, the extracted edges are about

missing edge points in Section 2.3.

With all this information calculated it is now a simple
matter to calculate the true contrasof the line. Itis given
by the ratio of predicted responsg according to (9) and
the observed responsé in the image:

7,,II

h=——— 12
o wa) 42

wherel is the line position according to (10). In order to
achieve maximum accuracy has to be determined with
sub-pixel precision from the image by interpolation.

2—4 pixels from their true locations. The bottom part of
Fig. 7(a) shows that sometimes the bias removal can make
the location of one edge worse in favor of improving the lo-
cation of the other edge. However, the position of the line
is affected only slightly.

Figure 8 shows the results of removing the bias from the
test image of Fig. 2. Please note that in the areas of the
image where the line is highly asymmetrical the line and
edge locations are much improved. In fact, for a very large
part of the road the line position is within one pixel of the
road markings in the center of the road in the high resolu-
tion image. Again, a four times enlarged detail is shown
in Fig. 8(b). If this is compared to the detail in Fig. 8(c)



(a) Lines detected with bias removal

(b) Detail of (a) (c) Detail of (a) without bias removal

Figure 7. Lines and their width detected (a) in an aerial image of resolution 1 m with the bias re-
moved. A four times enlarged detail (b) superimposed onto the original image of resolution 0.25 m.
(c) Comparison to the line extraction without bias removal.

the significant improvement in the line and edge locations time to process an image of size 256256 is about 1.7
becomes apparent. seconds on a HP 735 workstation.

The presented approach shows two fundamental limita-
4. Conclusions tions. First of all, it can only be used to detect lines with
a certain range of widths, i.e., betwe@and2.50. This is

This paper has presented an approach to extract lines and@ Problem if the width of the important lines varies greatly
their widths with very high precision. A model for the most 1N the image. However, since the bias is removed by the
common type of lines, the asymmetrical bar-shaped line, 2l90rithm, one can in principle select large enough to
was proposed. A scale-space analysis was carried out fofOVer all desired line widths and the algorithm will still
this model profile. This analysis shows that there is a strongYi€!d valid results. This will work if the narrow lines are
interaction between a line and its two corresponding edgeg €latively salient. Otherwise they will be smoothed away
which cannot be ignored. The true line width influences the IN Scale-space. Of course, oneés selected so large that
line width occuring in an image, while asymmetry influ- neighboring lines will start to influence each other the line
ences both the line width and its position. From this analy_ model will fail and the results will deteriorate. Hence, in
sis an algorithm to extract the line position and its width was re;ahty there is a limited range in yvhlgh can 'be'chosen to
derived. This algorithm exhibits the bias thatis predicted by Yi€ld good results. In most applications this is not a very
the model for the asymmetrical line. Therefore, a method significant restriction since one is usually only interested in
to remove this bias was proposed. The resulting algorithm!ines in a certain range of widths. Furthermore, the algo-
works very well for a range of images containing lines of rithm could be iterated through scale-space to extract lines
different widths and asymmetries, as was demonstrated byPf Very different widths. The second problem is that the
a number of test images. High resolution versions of the definition of salient lines is done via the second directional
test images were used to check the validity of the obtainedderivatives. However, one can use semantically meaningful
results. They show that the proposed approach is able tovalu_es, i.e., the width and height of the line, to pbtam the
extract lines with very high precision from low resolution desired thresholds [12, 14]. Therefore, the algorithm could
images. The extracted line positions and edges correspond® Medified to accept these parameters as thresholds, and
to semantically meaningful entities in the image, e.g., road to compute_ appropriate thresholds for the second derivative
center lines and roadsides or blood vessels [14]. The ap{Tom them internally.
proach only uses the first and second directional derivatives Finally, it should be stressed that the lines extracted are
of an image for the extraction of the line points. No spe- not ridges in the topographic sense, i.e., they do not define
cialized directional filters are needed. The edge point ex-the way water runs downhill or accumulates [7]. In fact,
traction is done by a localized search around the line pointsthey are much more than a ridge in the sense that a ridge
already found using five very small masks. This makes the can be regarded in isolation, while a line needs to model its
approach computationally very efficient. For example, the surroundings. If a ridge detection algorithm is used to ex-



(a) Lines detected with bias removal

(b) Detail of (a)

(c) Detail of (a) without bias removal

Figure 8. Lines and their width detected (a) in an aerial image of resolution 1 m with the bias re-
moved. A four times enlarged detail (b) superimposed onto the original image of resolution 0.25 m.
(c) Comparison to the line extraction without bias removal.

tract lines, the asymmetry of the lines will invariably cause

it to return biased results.

Further work will concentrate on applying the technique

for modeling the bias in line position and width developed
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