
Interactive data inspection and program development
for computer vision

Wolfgang Eckstein, Carsten Steger

Forschungsgruppe Bildverstehen (FG BV)
Informatik IX, Technische Universität München

Orleansstr. 34, 81667 M̈unchen, Germany
E-mail: {eckstein|stegerc}@informatik.tu-muenchen.de

ABSTRACT

In this paper, an integrated program development environment for computer vision tasks is presented. The first component
of the system is concerned with the visualization of 2D image data. This is done in an object oriented manner. Programming
of the visualization process is achieved by arranging the representations of iconic data in an interactively customizable
hierarchy that establishes an intuitive flow of messages between data representations seen as objects. The visualization
objects, called displays, are designed for different levels of abstraction, starting from direct iconic representation down to
numerical features, depending on the information needed. Two types of messages are passed between these displays (update
and result messages) which yield a clear and intuitive semantics.

The second component of the system is an interactive tool for rapid program development. It helps the user in selecting
appropriate operators in many ways. For example, the system provides context sensitive selection of possible alternative
operators, as well as suitable successors and required predecessors. For the task of choosing appropriate parameters several
alternatives exist. For example, the system provides default values, as well as lists of useful values for all parameters of each
operator. To achieve this, a knowledge base containing facts about the operators and their parameters is used. Secondly,
through the tight coupling of the two system components, paramters can be determined quickly by data exploration within
the visualization component.

Keywords: Systems and Applications, Computer Aided Vision Engineering, Graphical User Interfaces for Computer Vision

1 INTRODUCTION

Many computer vision problems can be solved by using a library of image processing algorithms in combination with
simple control structures. Examples for this class of problems are chip inspection, counting and measuring objects, and
quality assessment. Many industrial vision tasks fall into this category of programs. In this domain it is essential that new
applications can be developed in the shortest possible time. Also, for complex applications like aerial image interpretation
or active vision rapid prototyping is a very convenient option as a first step towards the solution. Appropriate visualization
of the iconic data is very important for the development of image processing applications since it can speed up the process of
finding appropriate thresholds and parameter values tremendously. This motivates us to propose an integrated programming
environment that fulfills the need for rapid program development. It consists of two major components. The first component
is a tool for the visualization of iconic data and is described in sections 2–4. The second component is an interactive tool
for program development that is described in sections 5–8. Finally, section 9 concludes the paper.

1



2 VISUALIZATION OF ICONIC DATA

Through the last years different tools were presented designed to ease and accelerate insight into complex relationships of
image based data. Scientists working on problems related with the analysis of 2-dimensional images can be supported by
such tools in different aspects of their work, such as:

• interactive or automatic measurement of numerical features, statistics, and iconic features, e.g., enclosing circles;

• developing, programming, and debugging of new algorithms;

• choosing and validating of parameters (e.g., by checking and comparing the results of different segmentations);

• getting an overview of voluminous amounts of data (images or features) to find material of special interest;

Three well known tools to assist such tasks are the Khoros system with its iconic programming language Cantata,1 the
KBVision environment,2 and the Application Visualization System AVS.3 They are state-of-the-art in this field, offering an
interactive graphical user interface that allows the user to program and run image processing tasks using iconic languages.
But they also give the user the ability to manipulate and inspect image data and image-based features by interacting with
graphical representations of these features.

With all these tools the user can assemble representations of data and connect them with links. The links are paths for
“messages” which arise from user interaction with the original representations or which result from the selection of other
derived material for inspection. Therefore, these messages can include mouse events as well as the loading of a new image
into the system. For example, marking a range of values within a gray-value statistic can select a number of pixels that could
be displayed in an overlaid manner on the original image. Another typical example is the selection of a region of interest,
which leads to automated feature extraction and display of the results.

But there are significant differences in how the assembly and definition of relationships between visual objects are handled.
Khoros/Cantata and AVS allow visual programming of data flow between operators represented by icons. Calculations and
graphical representations of features are interpreted as distinct operators and have to be installed and connected separately.
The visualization of feature- and image-data is located in independent windows. This concept makes visualization an
integral component of image processing programs.

In contrast to this, KBVision offers a specialized tool separated from image processing. It consists of an array of display
cells packed together in one window. The cells are equal in size and each cell can hold one representation of different images
or features. This layout does not satisfy the different needs arising from visualization of numerical features (i.e., textual
output or histogram drawing in the case of KBVision) and images. Images are loaded into a cell by selecting them from a
menu. Each cell can be configured to hold one kind of representation: text, gray or color images, or statistical diagrams.
Especially choosing the type of visualization and the type of feature to visualize is a single user interaction. The contents
of displays are automatically updated by messages resulting from interaction within another or the same cell. The flow of
information can be customized from one cell to any other, including circular dependencies.

This net of relationships between displaying objects raises questions concerning the semantics and termination of updating
caused by interaction, which are not easy to understand for the user. Therefore, we propose how to organize such a dataflow
in an intuitive, easy to understand, and efficient way, which will be introduced in section 3. The implementation will be
discussed and evaluated in section 4.

3 PRINCIPLES AND CONCEPTS

We have chosen the architecture of separating operator based image processing from displaying and inspection tasks
because it allows independent building and reuse of visualization programs. This enables us to use different concepts of
visual programming more adequate for this special type of work.

Our idea to ease handling and understanding of message paths between displays is based on the following principles:

2



A.A
zoom of x zoom of y

B.C

A.B = B.C.A

correlation
histogram

gray-value

B.B
region-
feature

histogram

A
image x

B
image/region y

histogram

A.A.A
numeric
features

Iconic features

Numeric features

B.A
gray-
value

Figure 1: Example of a visual hierarchy

• Computation of features and the visualization of numerical and statistical features are combined into feature-display
objects (similar to KBVision). Visualization of iconic data takes place in iconic-display objects. Iconic data are
images, regions (arbitrary sets of pixels), polygons, etc., created by image processing programs or user interaction.

• Display objects are arranged in a graph consisting of different levels similar to a tree. Objects on the root level are the
entry points for iconic data.

• Messages can flow from higher to lower levels triggering updating of displays and/or calculation of features (update-
messages). These messages are caused by user interaction with displays or by new information fed into the root
display level.

• Special answer messages can flow upwards, but never flow downwards again (result-messages). They can lead to
additional drawing in their parent displays, but never lead to recalculation of features. They are caused by user
interaction with data in displays or image data.

Figure 1 shows an example that illustrates the effects caused by these principles. It displays some typical dataflow relations
and message types. An image x is drawn within a display A. Then display A.A on the second level is opened to examine
a special region of interest within x. Therefore, it can be seen as a child of A. Selecting a rectangle in display A leads to
sending the image to A.A and being visualized there. Drawing a region within image x can be performed in A or A.A,
causing the displays to mutually inform each other. After creating a display A.A.A for numerical features of regions (e.g.,
the enclosing circle) and making it a child display of the zoom-display A.A, the drawn region is sent to the feature-display.
The numerical features are computed and shown within this display and the enclosing circle is handed back to A.A and A.
There it could be overlaid on the original image and the drawn region. Similarly, display B shows image y and is connected
to a gray-value histogram B.A. By marking some part of the statistic for y, a set of pixels can be specified. This leads
to sending them back to the parent display B (interpreted as a region), where they can be overlaid. Every change of an
image loaded into display A or B causes an update message for all lower level displays, which eases repeating the same
inspection-tasks for similar or different images.

Regions that are imported into display B from image processing can be overlaid on image y. Additionally, this triggers
calculation in the region-feature histogram display B.B of a numerical feature (e.g., size) for all regions imported into B.
The values are displayed as a distribution. We want to stress here that the selected region from the gray-histogram B.A that
is displayed in B is not automatically forwarded to B.B. This prevents the number of messages from exploding and non
terminating in certain constellations, as well as unwanted side-effects, which can be hard for the user to estimate in advance
in complex visualization programs.

3



Finally, a display can have more than one parent and messages can skip levels (here our system differs from a tree). In
our example this would happen if the user opens another zoom display B.C and wants to compute a gray-value correlation
histogram (2-dimensional) between the images in B.C and A (assuming they have identical size). A special situation arises
(not in our example) if a node has two children feeding a common display, that sends result-messages back to them. Then
two duplicates of each result message reach their parent. We do not consider this a problem, because it can be handled by
assigning a unique message identification.

We see two basic advantages in this way of organizing and interpreting image inspection as a hierarchical layered network:

• The dataflow itself can be visualized clearly laid out in an iconic diagram (e.g., in a manner similar to figure 1).

• Such a graphical representation can be used as an editor to create image inspection programs (as discussed in section 4).
No programming in the classical sense is required.

4 IMPLEMENTATION AND EXTENSIONS

4.1 Integration of the concepts into an image inspection application

As outlined in section 3, we distinguish between operator based image processing and interactive inspection tasks. Therefore,
we decided to implement two independent applications that are tightly coupled via sockets or files and act as one image
analysis tool. These are theHORUSDevelopprogramming and debugging system, described in section 8 and the
HORUSInspectorapplication, which we want to focus on in this section. They are based on theHORUS image
processing environment4 and the OSF/Motif standard for graphical user interaction. TheHORUS Inspectoris directly
designed based on the ideas developed so far in this paper.

4.2 Data types and message types

We intentionally delayed the discussion of image data types and message types exchanged by the described displays until
now, because they depend in some way on the underlying image data structures. TheHORUS library offers 2-dimensional
image processing and supports regions, polygons, and images with a variable number of gray-channels. Therefore, we
restricted our system to the visualization of 2-D material and the calculation of features generated from 2-dimensional data.

From a 2-D image we consider the following elements suitable for being objects of interest: gray-channels, coordinates
(with the resolution of the image or to subpixel accuracy), polygons, splines, regions of interest (interactively defined areas),
arbitrary regions, and sets of these objects. All of them are potential message objects, which can be the result of image
processing or user interaction with iconic representations. Besides the ability to determine a zoom by specifying a region
of interest, they can be used to derive a vast amount of different feature types that can be classified into three (not always
distinct) classes:

• simple numerical features: gray-value, color, length, extent, area, standard deviation, mean-value, etc.;

• iconic features: coordinates, center of gravity, enclosing rectangle, etc.;

• complex statistical features derived from objects or sets of objects: region-feature statistics, gray-value statistics,
gray-value correlation statistics, etc.

The current implementation, which will be described now, limits the user selectable types on 2-D material to pixels, regions
and multi-channel images. This was done because they are best supported by theHORUS image processing library, not
restricting the principles of dataflow in any way.

4



Inspector 2Manager

Message flow

Display

Container 1

Inspector 1

Displays

Figure 2: Main components of the HORUSInspector system

4.3 Classes of visualization objects

The distinct feature classes we introduced imply different ways of representation and interaction. Simple numerical features
are best displayed in textual or simple graphical form and are not very useful for interaction. They reside in feature-displays.
Iconic features are suited for overlaying them on the basic image. But we decided to place a second textual representation
of them in feature-displays, where their values can be determined. Complex statistical features should be displayed in their
own windows and can be used for selecting interactively sets of pixels or sets of regions. A second useful way to classify
features in our context is to distinguish whether they are based on the object itself (e.g., lengths and coordinates) or on the
object combined with the underlying image channels (e.g., color, gray-value, and gray-value statistics).

Our last criterion for classification is the type of source object to be examined.

From these criteria we designed a system of basic visualization and feature object classes (figure 2 shows an example of the
appearance of the system):

• Objects for direct interaction with iconic data (images and regions). An instance of this class is calledinspector. This
display allows integrated measuring of simple pixel based features like coordinates and distance. Furthermore, it is

5



possible to zoom into parts of the image and select different display modes, e.g., color look-up tables or2 1
2 -D plots.

This display is very powerful in itself and suffices for many applications.

• Color-info displaysserve for displaying attributes of pixels, e.g., gray-, RGB-, and HSI-values.

• Region-feature displaysprovide textual and simple graphical representations of region based numerical features like
area, compactness, number of holes, or enclosing rectangle. Each display can be configured with respect to the range
of values and the scaling (e.g., logarithmic scale).

• Gray-region-feature displaysare responsible for gray-component dependent numerical region features, e.g., medium
intensity, standard deviation, or entropy. They are represented textually and graphically.

• Gray-value histogramscalculate and display the statistical distribution of pixel-values within a region or a region of
interest.

• Region-histogram displaysshow the distribution of numerical features of a set of regions. Typical features are area,
excentricity, circularity, or convexity.

For all of these basic classes we implemented one subclass, that can be instantiated by user at runtime. The instances
appear to the user as windows that serve to hold the visualization the user can interact with. Beside this they contain control
elements allowing to change parameters for graphical representation, for feature calculation, and in some cases the feature
to be selected itself (e.g., in the region-histogram display).

4.4 Interaction with iconic and numerical data

We now want to give a more detailed insight into the techniques we offer in theinspectorclass implementation.

The user can load images, regions, or polygons into an inspector at root level by dragging a textual or iconic representation,
e.g., from theHORUSDevelopapplication, into the inspector window. Executing a send command referring to the target
inspector within an image processing program has the same effect. The material can replace or be merged into the existing
data, either under user control or automatically. Images, regions, and polygons can be displayed overlaid or separately with
customizable color lookup tables and drawing colors respectively. Single gray-channels can additionally be shown as2 1

2 -D
plots or contour lines. All displays that are connected to a particular inspector are kept in acontainerwindow. This prevents
the desktop from being cluttered with too many windows.

Different operating modes are offered for the creation of message objects. In pixel mode, coordinates and sets of coordinates
can be selected. In resize mode a region of interest (rectangular) can be drawn or chosen with special resize sliders. It is
displayed directly within the window or sent to child displays and inspectors, where it is interpreted as a region or a resize
message respectively. In region mode the user can draw or select a single region by directly pointing at it with the mouse. If
regions overlap, this is handled with the help of an additional menu that allows to select them from an ordered list. Figure 3
shows an example inspector window.

Special effort was made to give the user graphical feedback for each action he performs. For instance, when pressing a
mouse button within a region, it is drawn in a special color. If more than one region was selected (regions can overlap),
pre-selection message-objects are sent to the child displays. Region-based feature-displays will then compute the relevant
features and display them. Based on this visual feedback, the user can select the desired region or abort the selection.
In the first case they fix the new state. In the second case this causes all children to redraw their windows to the state
before the aborted attempt. Also, single displays can be excluded from this snooping if feature computation is too time
consuming. Displays can be completely excluded from updating if they are to be compared with other displays showing
recently inspected feature data.

The second interactive display types are the histogram based ones. As already indicated above, one can mark a range within
the histogram with the mouse. For this range, a selection can be started which determines all pixels or regions whose
gray-value or feature lies within the range. These result-objects are automatically sent to the parent inspectors which display
them.

6



Figure 3: An inspector showing an image overlaid with regions resulting from a segmentation operation

The displays for simple numerical features show them textually or in the way of a gauge (a speedometer would be another
good, but more space consuming, possibility). In contrast to the statistical feature displays, a set of features shown within
one display, because we consider the automatic and intuitive layout of one single big window (e.g., the middle display in
figure 2) easier than that of many small ones. Similarly, the display parameters first follow a default configuration that offers
typical ranges and scales and can be changed at runtime. We also integrated the generation of numerical based, but iconic
interpreted, features into these displays. An example is the enclosing rectangle supported by our region-feature display, but
its representation there is only textual. The calculation of an iconic representation can be induced by a special export button
and sent as a result-object to the parent display. An example of three numerical displays is given in the container window
in figure 2. Figure 4 shows a further example of a display set-up.

4.5 Constructing visual hierarchies

We want to close our system description with some remarks about the visual programming tool we designed to create
hierarchical networks, namedmanager.

To create a new instance of a display, the user can choose an icon from a toolbar of icons representing the different display
classes. The manager window contains the visualization of the message flow graph. The nodes in this graph are represented
by icons of the respective classes. By dropping a class-icon upon an element of a hierarchy, an instance of this class is
created and connected as a child display or child-inspector of the target object. Instantiated objects can also be used as
prototypes in the same way. Because in this case all the visualization and feature relevant parameters are passed to the new
incarnation, this eases constructing hierarchies for many similar tasks. In the current implementation, we reduced the height
of these networks to the root and one child level and chose graphical representation based on a line of icons. The root of

7



Figure 4: A container window consisting of displays for gray-region features and gray-value histograms

the tree is displayed on the left, while all displays connected to it are arranged in a linear fashion to the right. This does not
allow to deviate from a tree and will be changed into a layout that resembles figure 1. In the upper left part of figure 2 the
manager window is shown that was used to create the various displays in that figure.

The manager of the next generation will also allow to load and save complete hierarchies with all parameters of the objects.
It will support distributing inspectors and displays across several X-displays, to get rid of the problem of limited desktop
space in the context of complex visualization networks.

5 EVALUATION OF PROGRAMMING PARADIGMS

The remaining sections of this paper will focus on program development during the realisation of computer vision applica-
tions.

In recent years several programming paradigms have found widespread use for creating computer vision applications. In
this section these paradigms are examined to determine which one will facilitate rapid program development to the highest
degree.

At the moment, two major graphical programmingparadigms for creating computer vision algorithms based on an underlying
image processing library can be identified. The first paradigm is “graph-oriented.” Software systems like Khoros/Cantata,1

AVS,3 or KBVision2 allow the user to compose a graph with the nodes representing calls to the library and the arcs
symbolizing data flow. The second paradigm is to create a textual description of the algorithm. This can either be done
by creating the program with an ASCII editor, which normally has no knowledge about the library being used but may
give partial syntactic support, or by using a graphical editor that has full knowledge about the underlying image processing
library. An example of the ASCII category is the Vista system.5 The Visilog system is an example of text-based tool with
graphical support. The Image Understanding Environment6 will eventually allow both paradigms to be used.

The advantages and disadvantages of each paradigm can be evaluated using various criteria. First of all, readability and
understandability of the programs have to be considered. For small programs with less than ten operations graph-based
programs are easier to understand because the whole program fits onto the screen and therefore the program structure and

8



data flow is readily apparent. However, the situation changes if large scale programs have to be developed. Here, one of two
problems occurs. Either the program is displayed in a scaled down manner to make it fit onto the screen or the user only sees
a certain part of the program. In the first case the structure may be hard to understand because usually the arcs connecting
the operators will cross each other or run very close to each other. So it is very difficult to tell which arc connects to which
operators. Therefore, the structure and data flow of large programs are not readily apparent. In the second case, the user is
limited to looking at the program through a small peephole and consequently has to scroll through the whole graph when
trying to understand a particular program. While the user can identify the data flow between operators that have been laid
out closely to each other, the overall structure of the program is equally hard to understand as in the first case. Furthermore,
if the underlying image processing library provides high level data structures, e.g., sets of points, lines, or regions, a program
will in most cases be a linear sequence of operators. Hence, the graph structure will be of no advantage. Therefore, if larger
image processing algorithms have to be developed, the textual description of the algorithm has a clear advantage compared
to the graph-based description.

The second criterion that can be used to evaluate each paradigm is the time it takes to learn to program with the system. Here,
it seems that graph-based systems can be learned more easily because they can be operated more intuitively and because the
user does not have to deal with variables and other distractions. Text-based systems, on the other hand, require more time
to learn since the user has to make the data flow explicit by using variables and has to learn the syntax of the operators that
he wants to use.

Finally, the visualization of the program has to be considered. While many algorithms can be visualized adequately using
the graph-based approach, many commonly used programming constructions cannot be represented as graphs in a natural
manner, e.g., loops and arithmetic expressions, and some cannot be visualized as a graph at all, e.g., data type definitions.
Most graph-based systems that allow the user to use variables and expressions resort to textual input of these types of data.
This is a clear break of the graph-based programming paradigm, since the user now has to learn the syntax of the expressions
that he wants the system to evaluate. Therefore, one of the advantages of the graph-based approach is lost. Here, the
text-based systems have the big advantage that every programming construct can be described within the same paradigm
and syntax, namely the textual description of the program. No switching between paradigms is necessary.

6 REQUIREMENTS FOR A PROGRAMMING ENVIRONMENT FOR
IMAGE PROCESSING

There are a number of requirements that a programming environment has to fulfill in order to help the user to develop
computer vision applications quickly. We will present them in the order of their importance.

• Rapid prototyping. This means that the user should be able to solve a given computer vision problem quickly and be
able to develop a prototype of his application rapidly. Every program step should immediately move him closer to the
solution.

• Reduction in programming time. This covers the task of editing. The system has to minimize the effort for the actual
composition of the program.

• Support in all aspects of programming. The system should help the user in the selection of useful parameters for
operators or even in the selection of the most appropriate operator itself.

• Minimization of programming errors. Syntactic and semantic errors should be avoided wherever possible and be
detected as early as possible by the system.

• Tools for debugging. The system must help the user to localize the errors that the system cannot detect automatically.

• Development of complex applications. Control structures, powerful data types, and variables have to be an integral
part of the language.

• Integrability into other tools. Since no tool can provide the user with any need he might have, the code that is
developed must be able to be integrated into other tools the user uses.

9



• Maintenance and adaptation of programs. Programs that have been developed should be easy to adapt to new
requirements.

• Documentation of programs. The system should support the user in documenting the program he has developed.

• Portability of programs. Adaption of programs to other hardware platforms must be feasible in minimal time.

As a conclusion of the discussion in section 5 and from these requirements it can be seen that the most viable programming
paradigm in this case is a textual description of the program in an interpreted language that is edited within a graphical user
interface.

7 CONCEPTS FOR FACILITATING RAPID PROGRAM DEVELOPMENT

In this section the concepts that are necessary to fulfill the requirements from section 6 will be presented.

7.1 Rapid prototyping and reduction of programming time

In order to reduce the amount of time that is spent to compose a program, the effort to edit it has to be minimized. There
are a number of means by which this can be achieved. First of all, the user must be able to select the operator he wants to
use with minimal use of the keyboard. Therefore, the system should have menus which present the operators in a structured
manner to the user. This means that operators have to be grouped into meaningful chapters and sections. For example,
all the edge detection operators should be grouped into the chapter “Filters/Edge-Detection.” Of course, every user has a
different notion of meaningful chapters. Therefore, the system should allow different structuring criteria. Once the user has
acquired some knowledge about the system and knows the names of the operators that are most useful to him, it is often
more convenient for him to enter the name of the operator rather than to select it from the menu. In order to minimize the
number of keystrokes, the system must be able to select the appropriate operator if the user enters a substring of the name.
If more than one operator name matches the name that the user provides, he should be given a list of operators that match
and should be able to select the appropriate one.

Another concept to reduce the programming time is that the system should provide reasonable names for output variables
by default and provide the user with a list of all variable names that have been used so far, so he can quickly enter variable
names into a parameter field. Furthermore, the system has to provide useful default values for each operator. Additionally,
it must take care of the administration of variables, i.e., their graphic representation and memory management. This relieves
the user from low-level details that would require a high percentage of his programming time. Furthermore, the system
should automatically lay out the program text in a manner in which the structure of the program is readily apparent.

One last important point is that the system and the language it uses should be self contained and have minimal overhead.
If the programming language C is taken as an example, the user first has to include some necessary header files and then
edit the main function of the program. All this overhead is unnecessary in a system that is aimed at reducing program
development times.

7.2 Support in all aspects of programming

To facilitate rapid program development, the user should receive maximum support and help by the system. This means
that the system has to provide useful suggestions for the operators that can be used. It must provide suggestions for possible
preceding and succeding operations. For example, if the user wants to apply a dynamic threshold operation to an image, the
system should list some smoothing operations, like a mean or a Gaussian mean, as a predecessor. Furthermore, it should
suggest some morphological operations, like connected component determination or opening, as a successor. Also, the
system has to suggest possible alternatives for the currently selected operator if the user is not satisfied with the results it
yields. For the dynamic thresholding operation mentioned above, the system might suggest a simple threshold operation or
a bandpass filter. Finally, there should be a pointer to other operators that might be of interest for the user in the selected
context. For example, the dynamic thresholding operation can be used to detect local maxima in an image. Therefore the
system should list an operator that finds local maxima directly as a possibly related operator.

10



Once the user has selected an appropriate operator, the system should display (upon request) a list of useful values for each
parameter. This serves two purposes. If the user has little knowledge about the operator, he can get an impression which
values might be appropriate and can try values contained in the list as a starting point for optimal parameter selection.
Furthermore, if the values that the system suggests are well chosen, the user will rarely have to try more than two or three
values from the list before finding the best value for his application. This further facilitates rapid program development.

One point that is very important for novice users as well as experienced users is an online help system that includes a context
sensitive help facility. This means that if the user has selected an operator and wants to obtain information on this operator,
he should only have to press one button and the system should present him with the description of the selected operator. This
description should, of course, include all the relevant information in a well structured manner. Depending on the experience
of the user, he should be able to configure the help system such that only information relevant to him is displayed.

7.3 Minimization of programming errors and debugging tools

In order to minimize programming errors, two aspects are of importance. First of all, the operators should be selectable by
graphical elements like menus or lists. This prohibits the user from selecting operators that do not exist. Furthermore, the
parameters that the user has to enter must be presented in a structured manner. This means, for example, that each parameter
should have its own data entry field and that variables and values can be selected and placed into each field through the use of
graphical elements, like menus or a drag-and-drop mechanism. The system then has to take care of syntactical elements like
parentheses, spaces, and commas for the presentation of the program. This prohibits the user from forgetting parentheses or
inadvertedly deleting a comma while editing.

To help the user to detect programming errors as quickly as possible, there has to be a direct link between the editing of
the program and its execution. This means that once the user has fully parameterized an operator and finished editing, the
system should immediately execute the operator and display the results of the computation. The system should be able
to visualize numeric and iconic data in the most appropriate manner and only require the user to select a special mode of
display if he wants to achieve special effects. If the user detects a parameter that he has set to an inappropriate value or
made any other mistake, he can immediately spot the problem and fix it. Immediate execution and visualization should be
optional, however, since an experienced user might wish to enter a program quickly and only run it once he has finished
editing it. This can save time since some visualization processes might require complex computations.

Furthermore, in order to debug complex programs, the system must provide most of the capabilities of a good symbolic
debugging tool. This means that the user must be able to set the program counter to any position he desires. Also, there
has to be an execution mode in which the user steps through the program in a single step manner and a mode in which the
program runs continuously. The latter mode has to be able to handle breakpoints, so the user can stop the program at certain
locations. In all cases, the user must be able to change the contents of variables and the program itself, even while it is being
executed.

7.4 Development of complex applications and integration into other tools

In order to enable the development of complex applications, the language that is used must contain a complete set of
execution control commands, i.e., branch constructs likeif . . . then. . . elseor loop constructs likefor . . . endforor repeat
. . . until. However, the completeness of the language used has to be taken into account. Since the user might want to
execute calls to the underlying operating system or another library he is accustomed to, the desired level of completeness
is very hard to achieve. Also, the user may want to integrate the program he has developed into a larger application as a
subtask. For example, a program that finds lines in aerial images might be incorporated into a symbolic reasoning system
as a subtask for extracting roads in low resolution imagery. Therefore the system should allow the user to save the program
he has developed in the programming language of his choice. Once this conversion is done, the user gains the completeness
of his programming language of choice, but will lose most of the advantages that the system gives to him. Therefore the
option to convert the program into another language should only be used at the very end of the development process.

7.5 Life cycle of programs

Usually computer vision programs have to be maintained and adapted to new requirements, e.g., different object character-
istics. Also, as new hardware platforms become available, the quick porting of programs to new architectures is important.

11



Therefore the system has to support all the traditional, but seldom provided, life cycle tools of software development, e.g.,
debugging and documantation.

In order to adapt a program to new circumstances, the concepts described in section 7.2, especially the suggestion of
alternative operators and useful parameter values, help the user to quickly adapt an existing program.

If a program has to be maintained or adapted, good documentation is essential. Based on the knowledge-base that contains
facts about the primitive operators, the system can aid the user to generate the documentation for the application. The part of
the documentation that deals with parameters, types, and assertions of the program can be generated mostly automatically.
The semantics of the program has to be entered by the user. Since the knowledge about the operators is highly structured,
the system can direct the user to missing information.

Portability of developed programs relies heavily on the fact that the underlying image processing library must be portable.
The same argument holds for the graphical user interface. Here, standard libraries have to be used. Finally, the system must
support many different programming languages on output (see section 7.4), depending on the availability and convenience
on the target machine.

8 IMPLEMENTATION OF THE SYSTEM

Most of the concepts that have been described in section 7 have been incorporated into a working programming environment
calledHORUSDevelop. This tool is based on theHORUS image processing library4 which provides about 600 operators,
mainly in the low- and mid-level domain, as well as a knowledge base with facts about the available operators. The remainder
of this section will describe how the concepts developed in section 7 have been put into practise.

Figure 5 shows the general appearance of the system. In this caseHORUSDevelopwas used to develop a program that
detects roads in aerial images with a ground resolution of 2 m. In this resolution roads can be modeled as lines that are
brighter than their surroundings. However, buildings should not be detected by the program. From these considerations a
program was developed that first extracts objects that are higher than their surroundings from a digital terrain model of the
area. In the second part of the program lines that are brighter than their surroundings are extracted. The final result of the
process can be seen in the graphics window in figure 5.

TheHORUSDevelopsystem consists of three major windows. In the main window, shown on the top left of figure 5, the
user can edit the program code in textual description with the help of a graphical editor. To enter a line of code, he can select
operators from four menus or enter the operator name in a text field. The menuControlcontains loop and branch constructs
as described in section 7.4. The menusDevelopandHORUSallow the user to select operators from theHORUS image
processing library. The menus are structured in a chapter/section fashion to enable the user to select the appropriate operator
quickly. TheSuggestionsmenu allows the user to look for alternative operators to the currently selected one, for possible
predecessor and successor operators, and for other operators that might be interesting for him. These menus facilitate rapid
prototyping since the user can try different operators very quickly.

Once the user has selected an operator, the parameters are presented to him in a structured manner in the parameter editing
area of the main window. The layout of this area is determined dynamically from the knowledge about operators, including
types, value lists, assertions, ranges, and default values. Consequently, no changes to the user interface have to be coded
when adding a new operator. Each parameter has aVariablesbutton associated with it, so that the user can bring up a list
of variables used so far and enter or replace the current variable name. Another possibility to enter a variable name into a
parameter field is to drag it from the variable window into the appropriate field. Furthermore, most parameter fields have
a Valuesbutton associated with it. When one of these buttons is pressed a list with useful values for the parameter will
be displayed, as shown in figure 5 for the parameterFeatures. With this scheme, the user rarely has to enter data on the
keyboard. Since the parameters are presented in a manner in which the user does not have to take care about the syntax of the
language, programming errors that result from missing parentheses and other similar error sources are avoided. Additionally,
the system takes care of the layout of the program. Hence, the time to write the program code will be significantly reduced.

If the user has fully parameterized the operator he can selectOK, in which case the operator will be executed immediately
and the results will be shown in the visualization window. If he pressesEnterthe operator will be added to the program but
not be executed. This is useful for quickly editing a program. Additionally, the user can pressHelp to get a manual page

12



Visualization windowOperator selection Execution control

Trash can

Program code

Value selection

Parameter editing

Iconic variables

Numeric variablesVar. inspector

Figure 5: Main components of the HORUSDevelop system

about the currently selected operator. The manual page is presented in a highly structured manner. However, it is not yet
possible to configure which parts of the documentation are shown.

Once the user has developed a program, it can be debugged through the use of the execution control buttons. These provide
single-step and continuous execution until the user stops the program or a breakpoint is reached. Breakpoints and the
program counter can be set in the area to the left of the program code window. During program execution all results are
immediately visualized. Iconic data is displayed in the graphics window and in symbolic form in the variable window.
Numeric data is only displayed in the variable window. Thus, the user has immediate feedback about the results of each
operation and will be able to detect programming errors very quickly. Also, by this mechanism the effort necessary to
maintain and adapt an application is greatly reduced. Finally, if the user is satisfied with the results of his program and needs
a specialized application, e.g., a fancy user interface, he can output the program in a programming language of his choice.
At the moment the system can produce C and C++ code.

13



9 CONCLUSIONS

In this paper concepts for the visualization of iconic data are presented in a systematic manner. From these concepts, a tool
HORUSInspectorhas been developed that integrates most of them into a working environment and is currently in use.
The novelty of the presented approach lies in the organization of the display objects into a hierarchy in which messages
are passed between displays with a well defined semantics. This makes the system easy to handle. It allows fast and easy
building of complex visualization programs in an interactive and intuitive way. A clear structure is presented to the user,
arising from a highly adapted object oriented design.

Furthermore, the requirements and concepts that allow the rapid development of computer vision applications have been
presented. A toolHORUSDevelophas been developed that integrates most of these concepts into a working rapid
prototyping environment and is currently in use. However, at the moment the tool does not provide facilities to support the
user in documenting his programs. One additional area of improvement that will further speed up program development is the
input and visualization of parameters. If the semantics of a group of parameters is known, e.g., that four particular parameters
describe a rectangle, a specialized input field can be displayed to the user. These two concepts will be implemented in the
near future. Furthermore, the visualization of results while the user is in the process of selecting a parameter can be of great
help. For example, if the user can select the parameters of a threshold operation using sliders and the results are immediately
displayed when the user moves the slider, the time to find appropriate parameters for an operator will be greatly reduced.
Finally, the suggestion of operators can be extended. One can envision a system that automatically determines sequences of
operators from the input data and the result the user desires. Research in this area is planned.

10 REFERENCES

1. K. Konstantinides, J. R. Rasure, “The Khoros Software Development Environment For Image And Signal Processing”,
IEEE Transactions on Image Processing, Vol. 3, No. 3, pp. 243-252, May 1994.

2. Amerinex Artificial Intelligence, Inc., “General Support Tools for Image Understanding”,Amerinex Artificial Intelligence,
Inc. technical report, 1992.

3. C. Upson, T. Faulhaber, Jr., D. Kamins, D. Laidlaw, D. Schlegel, J. Vroom, R. Gurwitz, A. van Dam, “The Applica-
tion Visualization System: A Computational Environment for Scientific Visualization”,IEEE Computer Graphics &
Applications, pp. 30–42, July 1989.

4. B. Radig, W. Eckstein, K. Klotz, T. Messer, J. Pauli, “Automatization in the Design of Image Understanding Systems”,
Proc. 5th International Conference IEA/AIE, Paderborn, Germany, 1992.

5. A. R. Pope, D. G. Lowe, “Vista: A Software Environment for Computer Vision Research”,Proc. IEEE Conf. on Computer
Vision and Pattern Recognition, pp. 768–772, 1994.

6. J. L. Mundy and the IUE Committee, “The Image Understanding Environment: Overview”,Proc. DARPA Image
Understanding Workshop, pp. 283–288, 1993.

14


	Abstract
	1. Introduction
	2. Visualization of Iconic Data
	3. Principles and Concepts
	4. Implementation and Extensions
	4.1. Integration of the concepts into an image inspection application
	4.2. Data types and message types
	4.3. Classes of visualization objects
	4.4. Interaction with iconic and numerical data
	4.5. Constructing visual hierarchies

	5. Evaluation of Programming Paradigms
	6. Requirements for a Programming Environment for Image Processing
	7. Concepts for Facilitating Rapid Program Development
	7.1. Rapid prototyping and reduction of programming time
	7.2. Support in all aspects of programming
	7.3. Minimization of programming errors and debugging tools
	7.4. Development of complex applications and integration into other tools
	7.5. Life cycle of programs

	8. Implementation of the System
	9. Conclusions
	10. References

