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ABSTRACT

A new approach to the extraction of curvilinear structures from digital images is described. The approach is based on computing a
second order Taylor polynomial for each pixel in the image by convolution with derivatives of a Gaussian smoothing kernel. Line
points are found based on differential geometric properties of this polynomial: they are required to have a vanishing gradient and a
high curvature in the direction perpendicular to the line. The line direction is obtained from the eigenvectors of the Hessian matrix.
Because Gaussian masks are used to determine the polynomial the filter generates only a single response for each line. Furthermore,
the line position can be determined with sub-pixel precision and the algorithm scales to lines of arbitrary width. An analysis about the
scale-space behaviour of two typical line types (parabolic and bar-shaped) is given. From this analysis, requirements and useful values
for the parameters of the filter can be derived. Furthermore, an algorithm that links the individual line points into lines and junctions
is given. Its advantage is that it preserves the maximum number of line points while providing a topologically sound data structure of
lines and junctions. The versatility of the presented algorithm is illustrated through examples on a number of different aerial images.

1 INTRODUCTION

Extracting lines in digital images is an important low-level oper-
ation in computer vision that has many applications, especially in
photogrammetric and remote sensing tasks. There it can be used
to extract linear features, like roads, railroads, or rivers, from
satellite or low resolution aerial imagery.

The published schemes to line detection can be classified into
three categories. The first approach detects lines by only consid-
ering the gray values of the image (Fischler et al., 1981, Jedynak
and Roźe, 1995). Line points are extracted by using purely lo-
cal criteria, e.g., local gray value differences. Since this will
generate a lot of false hypotheses for line points, elaborate and
computationally expensive perceptual grouping schemes have to
be used to select salient lines in the image (Fischler, 1994, Jedy-
nak and Roźe, 1995). Furthermore, lines cannot be extracted with
sub-pixel precision.

The second approach is to regard lines as objects having paral-
lel edges (Koller et al., 1995, Subirana-Vilanova and Sung, 1992).
In a first step, the local direction of a line is determined for each
pixel. Then two edge detection filters are applied in the direction
perpendicular to the line. Each edge detection filter is tuned to
detect either the left or right edge of the line. The responses of
each filter are combined in a non-linear way to yield the final
response of the operator (Koller et al., 1995). The advantage of
this approach is that since the edge detection filters are based on
the derivatives of Gaussian kernels, the procedure can be iter-
ated over the scale-space parameterσ to detect lines of arbitrary
widths. However, because special directional edge detection fil-
ters have to be constructed that are not separable, the approach is
computationally expensive.

In the third approach, the image is regarded as a functionz(x, y)
and lines are detected as ridges and ravines in this function by
locally approximating the image function by its second or third
order Taylor polynomial. The coefficients of this polynomial
are usually determined by using the facet model, i.e., by a least
squares fit of the polynomial to the image data over a window
of a certain size (Glazer, 1994, Busch, 1994, Haralick et al.,
1983). The direction of the line is determined from the Hessian

matrix of the Taylor polynomial. Line points are then found by
selecting pixels that have a high second directional derivative,
i.e., a high curvature, perpendicular to the line direction. The
advantage of this approach is that lines can be detected with sub-
pixel precision without having to construct specialized directional
filters. However, because the convolution masks that are used to
determine the coefficients of the Taylor polynomial are rather
poor estimators for the first and second partial derivatives this
approach usually leads to multiple responses to a single line,
especially when masks larger than 5× 5 are used to suppress
noise. Therefore, the approach does not scale well and cannot be
used to detect lines that are wider than about 5 pixels.

In this paper an approach to line detection that uses the differ-
ential geometric approach of the third category of operators will
be presented. In contrast to those, the coefficients of a second
order Taylor polynomial are determined by convolving the image
with the derivatives of a Gaussian smoothing kernel. Because
of this, the algorithm can be scaled to lines of arbitrary width.
Furthermore, the behaviour of the algorithm in scale space is in-
vestigated for various types of lines. Finally, an algorithm to link
the detected line points into a topologically sound data structure
of lines and junctions is presented.

2 DETECTION OF LINE POINTS

2.1 Models for Lines in 1D

Many approaches to line detection consider lines in 1D to be
bar-shaped, i.e., the ideal line of width 2w and heighth is assumed
to have a profile given by

fb(x) =

{
h, |x| ≤ w
0, |x| > w .

(1)

However, due to sampling effects of the sensor, lines usually do
not have this flat profile. Therefore, in this paper lines are assumed
to have an approximately parabolic profile. The ideal line of width
2w and heighth is then given by

fp(x) =

{
h
(
1 − (x/w)2

)
, |x| ≤ w

0, |x| > w .
(2)
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Figure 1: Scale-space behaviour of the ideal linefp when convolved with the derivatives of Gaussian kernels forx ∈ [−3, 3] and
σ ∈ [0.2, 2]
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Figure 2: Scale-space behaviour of the bar-shaped linefb when convolved with the derivatives of Gaussian kernels forx ∈ [−3, 3] and
σ ∈ [0.2, 2]

The line detection algorithm will be developed for this type of
profile, but the implications of applying it to bar-shaped lines will
be considered later on.

2.2 Detection of Lines in 1D

In order to detect lines with a profile given by (2) in an imagez(x)
without noise, it is sufficient to determine the points wherez′(x)
vanishes. However, it is usually convenient to select only salient
lines. A useful criterion for salient lines is the magnitude of the
second derivativez′′(x) in the point wherez′(x) = 0. Bright
lines on a dark background will havez′′(x) � 0 while dark lines
on a bright background will havez′′(x) � 0.

Real images will contain a significant amount of noise. There-
fore, the scheme described above is not sufficient. In this case, the
first and second derivatives ofz(x) should be estimated by con-
volving the image with the derivatives of the Gaussian smoothing
kernel

gσ(x) =
1√
2πσ

e
− x2

2σ2 . (3)

The responses, i.e., the estimated derivatives, will be:

rp(x, σ, w, h) = gσ(x) ∗ fp(x) (4)

r′p(x, σ, w, h) = g′
σ(x) ∗ fp(x) (5)

r′′p (x, σ, w, h) = g′′
σ(x) ∗ fp(x) . (6)

These equations are given in greater detail in (Steger, 1996).

Equations (4)–(6) give a complete scale-space description of
how the ideal line profilefp will look like when it is convolved
with the derivatives of Gaussian kernels. Figure 1 shows the
responses for an ideal line withw = 1 andh = 1 (i.e., a bright
line on a dark background) forx ∈ [-3, 3] andσ ∈ [0.2, 2]. As
can be seen from this figure,r′p(x, σ, w, h) = 0 ⇔ x = 0 for all
σ. Furthermore,r′′p (x, σ, w, h) takes on its maximum negative
value atx = 0 for all σ. Hence it is possible to determine the
precise location of the line for allσ. Furthermore, it can be seen
that because of the smoothing the ideal line will be flattened out
asσ increases. This means that if large values forσ are used, the
threshold to select salient lines will have to be set to an accordingly
smaller value. Section 4 will give an example of how this can be
used in practice to select appropriate thresholds.

For a bar profile without noise no simple criterion that depends
only on z′(x) and z′′(x) can be given sincez′(x) and z′′(x)

vanish in the interval[−w, w]. However, if the bar profile is
convolved with the derivatives of the Gaussian kernel, a smooth
function is obtained in each case. The responses will be:

rb(x, σ, w, h) = h
(
φσ(x + w) − φσ(x − w)

)
(7)

r′b(x, σ, w, h) = h
(
gσ(x + w) − gσ(x − w)

)
(8)

r′′b (x, σ, w, h) = h
(
g′

σ(x + w) − g′
σ(x − w)

)
. (9)

Figure 2 shows the scale-space behaviour of a bar profile with
w = 1 andh = 1 when it is convolved with the derivatives of a
Gaussian. It can be seen that the bar profile gradually becomes
“round” at its corners. The first derivative will vanish only at
x = 0 for all σ > 0 because of the infinite support ofgσ(x).
However, the second derivativer′′b (x, σ, w, h) will not take on
its maximum negative value for smallσ. In fact, for σ ≤ 0.2
it will be approximately zero. Furthermore, there will be two
distinct minima in the interval[−w, w]. It is, however, desirable
for r′′b (x, σ, w, h) to exhibit a clearly defined minimum atx = 0.
After some lengthy calculations it can be shown that

σ ≥ w/
√

3 (10)

has to hold for this. Furthermore, it can be shown that
r′′b (x, σ, w, h) will have its maximum negative response in scale-
space forσ = w/

√
3. This means that the same scheme as

described above can be used to detect bar-shaped lines as well.
However, the restriction onσ must be observed. The same anal-
ysis could be carried out for other types of lines as well, e.g.,
roof-shaped lines. However, it is expected that no fundamentally
different results will be obtained. For allσ above a certain value
that depends on the line type the responses will show the desired
behaviour ofz′(0) = 0 andz′′(0) � 0 with z′′(x) having a
distinct minimum.

The discussion so far has assumed that lines have the same
contrast on both sides of the line. This is rarely true in real
images, however. For simplicity, only asymetrical bar-shaped
lines

fa(x) =

{
0, x < −w
1, |x| ≤ w
h, x > w

(11)

are considered (h ∈ [0, 1]). The corresponding responses will be:

ra(x, σ, w, h) = φσ(x + w) − (h − 1)φσ(x − w) (12)

r′a(x, σ, w, h) = gσ(x + w) − (h − 1)gσ(x − w) (13)

r′′a(x, σ, w, h) = g′
σ(x + w) − (h − 1)g′

σ(x − w) .(14)

2



The location wherer′a(x, σ, w, h) = 0, i.e., the position of the
line, is given by

x = −σ2

2
ln(1 − h) . (15)

This means that the line will be estimated in a wrong position
when the contrast is significantly different on both sides of the
line. The estimated position of the line will be within the actual
boundaries of the line as long as

h ≤ 1 − e
− 2w

σ2 . (16)

(a) Contours (σ = 1.5) (b) Smoothed Image

Figure 3: Line detection for asymmetric lines (a). Smoothed
image (b).

Figure 3(a) illustrates this effect in practice. In this image
a three pixel wide line (i.e.,w = 1.5) that has a ramp with
h ∈ [0, 1] on one side is shown. Note that the position of the
line lies within the true boundaries of the line up to a rather high
value ofh. Hence, relatively large contrast differences can be
handled. The estimated positions of the line come as no surprise
when one looks at Fig. 3(b), which shows the smoothed image
the algorithm looks at internally to determine the line position.
To eliminate such erroneously located lines, simple thresholding
will suffice sincer′′a (x, σ, w, h) will have a small value ash → 1.
However, for illustrational purposes, the threshold has been set to
zero in this example.

2.3 Lines in 1D, Discrete Case

The analysis so far has been carried out for analytical functions
z(x). For discrete signals only two modifications have to be made.
The first one is the choice of how to implement the convolution in
discrete space. Integrated Gaussian kernels were chosen as convo-
lutions masks, mainly because they give automatic normalization
of the masks and a direct criterion on how many coefficients are
needed for a given approximation error. The integrated Gaussian
is obtained if one regards the discrete imagezn as a piecewise con-
stant functionz(x) = zn for x ∈ (n− 1

2
, n + 1

2
] and integrating

the continuous Gaussian kernel over this area. The convolution
masks will be given by:

gn,σ = φσ(n + 1
2
) − φσ(n − 1

2
) (17)

g′
n,σ = gσ(n + 1

2
) − gσ(n − 1

2
) (18)

g′′
n,σ = g′

σ(n + 1
2
) − g′

σ(n − 1
2
) . (19)

The approximation error is set to 10−4 in each case. Of course,
other schemes, like Lindeberg’s discrete Gaussian derivative ap-
proximations (Lindeberg, 1993) or a recursive computation (De-
riche, 1993), are suitable for the implementation as well.

The second problem that has to be solved is how to determine
the location of a line in the discrete case. In principle, one could
use a zero crossing detector for this task. However, this would

yield the position of the line only with pixel precision. In order
to overcome this, the second order Taylor polynomial ofzn is
examined. Letr, r′, andr′′ be the locally estimated derivatives
at pointn of the image that are obtained by convolving the image
with gn, g′

n, andg′′
n. Then the Taylor polynomial is given by

p(x) = r + r′x +
1

2
r′′x2 . (20)

The position of the line, i.e., the point wherep′(x) = 0 is

x = − r′

r′′
. (21)

The pointn is declared a line point if this position falls within the
pixel’s boundaries, i.e., ifx ∈ [− 1

2
, 1

2
] and the second derivative

r′′ is larger than a user-specified threshold. Please note that in
order to extract lines, the responser, which is the smoothed local
image intensity, is unnecessary and therefore does not need to be
computed.

2.4 Detection of Lines in 2D

Curvilinear structures in 2D can be modeled as curvess(t) that
exhibit a characteristic 1D line profile (e.g.,fp or fb) in the direc-
tion perpendicular to the line, i.e., perpendicular tos′(t). Let this
direction ben(t). This means that the first directional derivative
in the directionn(t) should vanish and the second directional
derivative should be of large absolute value. No assumption can
be made about the derivatives in the direction ofs′(t). For ex-
ample, letz(x, y) be an image that results from sweeping the
profile fp along a circles(t) of radiusr. The second directional
derivative perpendicular tos′(t) will have a large negative value,
as desired. However, the second directional derivative alongs′(t)
will also be non-zero.

The only problem that remains is to compute the direction of
the line locally for each image point. In order to do this, the
partial derivativesrx, ry, rxx, rxy, and ryy of the image will
have to be estimated. This can be done by convolving the image
with the appropriate 2D Gaussian kernels. The direction in which
the second directional derivative ofz(x, y) takes on its maximum
absolute value will be used as the directionn(t). This direction
can be determined by calculating the eigenvalues and eigenvectors
of the Hessian matrix

H(x, y) =

(
rxx rxy

rxy ryy

)
. (22)

The calculation can be done in a numerically stable and efficient
way by using one Jacobi rotation to annihilate therxy term. Let the
eigenvector corresponding to the eigenvalue of maximum absolute
value, i.e., the direction perpendicular to the line, be given by
(nx, ny) with ‖(nx, ny)‖2 = 1. As in the 1D case, a quadratic
polynomial will be used to determine whether the first directional
derivative along(nx, ny) vanishes within the current pixel. This
point will be given by

(px, py) = (tnx, tny) , (23)

where

t = − rxnx + ryny

rxxn2
x + 2rxynxny + ryyn2

y
. (24)

Again, (px, py) ∈ [− 1
2
, 1

2
] × [− 1

2
, 1

2
] is required in order for a

point to be declared a line point. As in the 1D case, the second di-
rectional derivative along(nx, ny), i.e., the maximum eigenvalue,
can be used to select salient lines.
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(a) Input Image (b) New approach (σ = 1.5) (c) Facet model (7× 7)

Figure 4: Line points detected in image (a) using the new approach (b) and using the facet model (c)

2.5 Examples

Figure 4(b) gives an example of the results obtainable with
the presented approach. Here, bright line points were extracted
from the input image given in Fig. 4(a). This image is part of
an aerial image with a ground resolution of 2 m. Figure 4(c)
shows the results that were obtained using the facet model. In
both cases the sub-pixel location(px, py) of the line points and
the direction(nx, ny) perpendicular to the line are symbolized
by vectors. The strength of the line, i.e., the absolute value of
the second directional derivative along(nx, ny) is symbolized by
gray values. Line points with high saliency have dark gray values.

From Fig. 4 it can be seen that in the approach presented here
there will always be a single response to a given line. When the
facet model is used, multiple responses are quite common. Note,
for example, the line that enters the image in the middle of the left
hand side. This makes linking the individual line points into lines
rather complicated. In (Busch, 1994) the response of the operator
is thinned before linking to get around this problem. However,
this operation throws away useful information since diagonal lines
will be thinned unnecessarily. In the new approach the linking
will be considerably easier and no thinning operation is needed.

3 LINKING LINE POINTS INTO LINES

After individual line pixels have been extracted, they must be
linked into lines. In order to facilitate later mid-level vision
processes, e.g., perceptual grouping, the resulting data structure
should contain explicit information about the lines as well as the
junctions between them. This data structure should be topologi-
cally sound in the sense that junctions are represented by points
and not by extended areas as in (Busch, 1994). Furthermore,
since the presented approach yields only single responses to each
line, no thinning operation needs to be performed prior to linking.
This assures that the maximum information about the line points
will be present in the data structure.

Since there is no suitable criterion to classify the line points
into junctions and normal line points in advance without hav-
ing to resort to extended junction areas, another approach has
been adopted. From the algorithm in Sect. 2 the following
data are obtained for each pixel: the orientation of the line
(nx, ny) = (cos α, sin α), a measure of strength of the line (the
second directional derivative in the direction ofα), and the sub-
pixel location of the line(px, py).

Starting from the pixel with maximum second derivative, lines
will be constructed by adding the appropriate neighbour to the
current line. Since it can be assumed that the line point detection

algorithm will yield a fairly accurate estimate for the local direc-
tion of the line, only three neighbouring pixels that are compatible
with this direction are examined. For example, if the current pixel
is (cx, cy) and the current orientation of the line is in the interval
[−22.5◦, 22.5◦], these points will be(cx+1, cy−1), (cx+1, cy),
and(cx +1, cy +1). The choice about the appropriate neighbour
to add to the line is based on the distance between the respective
sub-pixel locations and the angle difference of the two points.
Let d = ‖p2 − p1‖2 be the distance between the two points and
β = |α2 − α1|, β ∈ [0, π/2], be the angle difference between
those points. The neighbour that is added to the line is the one
that minimizesd + wβ. In the current implementation,w = 1 is
used. This algorithm will select each line point in the correct or-
der. At junction points, it will select one branch to follow without
detecting the junction. This will be detected later on. The algo-
rithm of adding line points is continued until no more line points
are found in the current neighbourhood or until the best matching
candidate is a point that has already been added to another line.
If this happens, the point is marked as a junction, and the line that
contains the point is split into two lines at the junction point.

New lines will be created as long as the starting point has
a second directional derivative that lies above a certain, user-
selectable upper threshold. Points are added to the current line as
long as their second directional derivative is greater than another
user-selectable lower threshold. This is similar to a hysteresis
threshold operation (Canny, 1986).

The contour linking approach presented here is similar to that
given in (Glazer, 1994). However, there the best neighbour is
determined from a neighbourhood that does not depend on the
current direction of the line. Furthermore, the author does not
mention whether explicit junction information is generated by the
algorithm.

With a slight modification the algorithm is able to deal with mul-
tiple responses if it is assumed that with the facet model approach
no more than three parallel responses are generated. No such case
has been encountered for mask sizes of up to 13× 13. Under this
assumption, the algorithm can proceed as above. Additionally, if
there are multiple responses to the line in the direction perpen-
dicular to the line (e.g., the pixels(cx, cy − 1) and(cx, cy + 1)
in the example above), they are marked as processed if they have
roughly the same orientation as(cx, cy). The termination crite-
rion for lines has to be modified to stop at processed line points
instead of line points that are contained in another line.

Figure 5 shows the result of linking the line points in Fig. 4
into lines. The results are overlaid onto the original image. In
this case, the upper threshold was set to zero, i.e., all lines, no
matter how faint, were selected. If an upper threshold of 5 were
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(a) New approach (σ = 1.5) (b) Facet model (7× 7)

Figure 5: Linked lines detected using the new approach (a) and using the facet model (b). Lines are drawn in white while junctions are
displayed as black crosses.

used only the salient lines would be selected. It is apparent that
the lines obtained with the new approach are much smoother
than the lines obtained with the facet model. Furthermore, the
geometric precision in case of unequal contrast is better with the
new approach. Note, for example, the line that enters the image
at the bottom right corner. This line has quite a different contrast
on both sides. With the new approach the line is within half a
pixel of the true location of the line while with the facet model it
lies more than one pixel from the true line.

4 FURTHER EXAMPLES

In this section some more examples of the versatility of the pro-
posed approach will be given. Figure 6(a) shows the complete
aerial image from which the image in Fig. 4 was taken. In this
example,σ = 1.5 and only bright lines that had a second deriva-
tive with an absolute value larger than 8 were selected. The lower
threshold for the hysteresis was set to 3. It can be seen from
Fig. 6(b) that the algorithm is able to extract most of the salient
lines from the image.

Figure 7 shows that the presented approach scales very well. In
Fig. 7(a) an aerial image with a ground resolution of≈ 50 cm is
displayed (the original test imagesuburb_l has been reduced
by a factor of 2). The lines in this image are approximately bar-
shaped. If 35 pixel wide lines are to be detected, i.e., ifw = 17.5,
according to (10), aσ ≥ 10.1036 should be selected. In fact,
σ = 11 was used for this image. If lines with a contrast of
h ≥ 100 are to be selected, (9) shows that these lines will have
a second derivative of≈ −0.29594. Therefore, the threshold for
the absolute value of the second derivative was set to 0.29. The
lower threshold was set to 0.1. Figure 7(b) displays the lines that
were detected with these parameters. As can be seen, most of the
roads were detected. Most of the lines in this image have different
contrasts on both sides of the line. Therefore it is not surprising
that the detected lines deviate slightly from the true centers of the
lines. This is especially true for the horizontal line in the bottom
right part of the image. However, even this line is detected within
the boundaries of the actual line.

5 CONCLUSIONS

In this paper a low-level approach to the extraction of curvilin-
ear structures from images was presented. An analysis of the
scale-space behaviour of two distinct line types was carried out.
The results of this analysis help tremendously in the selection of
the appropriate parameters for the algorithm. The advantages of
this approach are that line extraction is done using only the first

and second directional derivatives of the image. No specialized
directional filters are needed. This makes the approach computa-
tionally efficient. For instance, the 520×560 image in Fig. 6 was
processed in 8 seconds on a HP 735 workstation. Furthermore,
since the derivatives are estimated by convolving the image with
the derivatives of a Gaussian smoothing kernel, only a single re-
sponse is generated for each line. The algorithm has no problems
extracting line points where three or more lines meet.

An algorithm has been presented that links the extracted line
points into a data structure containing lines and junctions. Al-
though the algorithm itself does not attempt any perceptual group-
ing, the data structure that is generated will facilitate this in a
higher-level step.

The presented approach shows two fundamental limitations.
Firstly, if a line has highly different contrasts on each side oft
the line, the position of the line will be estimated in a different
position than the actual center of the line. This is a fundamental
limitation of other approaches as well (Koller et al., 1995, Busch,
1994). In this paper, an analysis was carried out that shows how
the position will vary with differing contrasts. Secondly, only a
combined estimate of the width and height of the line is returned.
This means, that narrow lines with high contrast will result in
similar responses as broad lines with low contrast. This contrasts
with the approach given in (Koller et al., 1995) that returns an
estimate of the width of the line as well as the height of the line
at the expense of computational complexity. However, if only
lines of a certain range of widths are present in an image, the
combined estimate presents no fundamental limitation since it
will then depend only on the contrast of the lines.
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