
TU München

Informatik IX

BVFG

On the Calculation of Arbitrary Moments of
Polygons

Carsten Steger

Technical Report FGBV–96–05

October 1996

Forschungsgruppe Bildverstehen (FG BV), Informatik IX
Technische Universität München

Technical Report FGBV–96–05
Copyright c© Carsten Steger

Address: Carsten Steger
Forschungsgruppe Bildverstehen, Informatik IX
Technische Universität München
Orleansstraße 34
81667 München
Germany

WWW: http://wwwradig.informatik.tu-muenchen.de/forschung/fgbv/
E-mail: stegerc@informatik.tu-muenchen.de

fgbv@informatik.tu-muenchen.de

On the Calculation of Arbitrary Moments of
Polygons

Carsten Steger

Abstract—This paper describes a method to calculate moments of arbitrary order from poly-
gons that enclose a region of two-dimensional space. These include various and often used
shape features, such as area, center of gravity, and second order moments. Contrary to most
approaches, which compute these features from discrete pixel data, here they are calculated by
using only the points of the enclosing polygon, which may be sub-pixel accurate. This has two
main advantages. Firstly, since the precise points of the boundary of the shape are used, the
resulting features will be computed with maximum accuracy. Furthermore, since the boundary
typically consists of fewer points than the whole region, the procedure is computationally more
efficient.

1 Introduction

A problem that frequently occurs in image processing tasks is the calculation of area, centroid
(center of gravity), and second order moments (moments of inertia) of a regionR in an image.
These are important shape features in themselves. For example, they can be used to fit ellipses
to extracted contours [3]. Often they are also used to compute the dominant directions and
approximate diameters of a region. These in turn are important for camera calibration tasks,
for example, where they can be used to approximate values for some parameters of the exterior
orientation to thus obtain good starting values for a calibration procedure [8]. Additionally,
recent work on moment based fitting of elliptic curve segments [13] and super-quadrics [12]
requires higher-order moments to be calculated.

The moment of order(p, q) of an arbitrary regionR is given by

νp,q =
∫∫
R

xpyq dx dy . (1)

If p = q = 0 we obtain the areaa of R. The moments are usually normalized by the areaa of
R:

αp,q =
1

a

∫∫
R

xpyq dx dy . (2)

Thus, we haveα0,0 = 1. Finally, forp + q ≥ 2, one is usually only interested in the normalized
central moments ofR:

µp,q =
1

a

∫∫
R

(x − α1,0)
p(y − α0,1)

q dx dy . (3)

1

This equation, of course, also holds forp + q = 1 with µ1,0 = µ0,1 = 0. The central moments
µp,q can be calculated from the momentsαi,j in the following way:

µp,q =
p∑

i=0

q∑
j=0

(
p

i

)(
q

j

)
(−1)p+q−i−jαp−i

1,0 αq−j
0,1 αi,j . (4)

Usually, the regionR will be discrete, i.e., consist of a set of pixels, each of which has an
area of1. The integrals in the above equations can then simply be calculated by summation
over the regionR. However, if regions are extracted by a sub-pixel precise feature extraction
algorithm, e.g., by the line detector given in [10], only the closed boundaryb of the region is
known, usually as a sub-pixel precise contour, which can be regarded as a polygon. There-
fore, the above equations cannot be applied to calculate the moments. There are two obvious
solutions to this problem. The first is to discretize the regionR to the pixel raster, which is
undesirable since sub-pixel accuracy is lost. Alternatively, one may triangulate the polygon,
and calculate the moments by computing them for each triangle, which can be done easily, and
then to finally add up the results [14, 11, 9]. However, triangulation is a costly operation, and
therefore a scheme that uses only the points on the polygonp to compute the moments is highly
desirable. It is interesting to note that, using a certain way of triangulating a polygon, formulas
similar to the ones derived in this paper can be obtained [9]. However, the derivation given there
lacks a rigorous proof of how these formulas were obtained.

In contrast to these approaches, one can apply Green’s theorem to reduce the area integral
over R in (1) to a curve integral along its borderb [1]. Various authors [4, 14] have used
this approach to derive recursive formulas to calculate the moments, but no general closed
form has been given. In order to calculateνp,q these recursive formulas require all moments
of orderp′ + q′ ≤ p + q to be calculated. Furthermore, the recursion formulas can lead to
numerical instabilities [14]. These problems are particularly undesirable in applications where
only very few higher order moments are required, e.g., moment-based fitting methods [13, 12].
In these cases an efficient, minimal closed form solution for moments of arbitrary order is highly
desirable.

2 Mathematical Tools

As described above, a way to calculate the moments is to apply the powerful result of Green’s
theorem, sometimes also referred to as the Green formula, the Gauss formula, or the Stokes
formula. This theorem allows one to compute the integral of a function over a sub-domain
R of the two-dimensional space by reducing it to a curve integral over the borderb of R [1,
Section 3.1.13.1]. More formally, it can be stated as follows: LetP (x, y) and Q(x, y) be
two continuously differentiable functions on the two-dimensional regionR, and letb(t) be the
boundary ofR. If b is piecewise differentiable and oriented such that it is traversed in positive
direction (counterclockwise), an integral over the regionR can be reduced to a curve integral
over the boundaryb of R in the following manner:

∫∫
R

∂Q

∂x
− ∂P

∂y
dx dy =

∫
b

P dx + Q dy . (5)

2

It is obvious that the computation of an integral of an arbitrary functionF (x, y) overR, as is
the case for the moments, whereF (x, y) = xpyq, F (x, y) must somehow be decomposed into
∂P/∂y and∂Q/∂x. It is also obvious that this decomposition cannot be unique, and therefore
the choice of the decomposition is essentially arbitrary.

The integral on the right side of (5) is a general curve integral. It is defined as follows [1,
Section 3.1.8.4]: Letb(t) = (x(t), y(t)), t ∈ [t1, t2] be a curve, and letf(x, y) be a continuous
function. Then the following two curve integrals exist and can be transformed to the definite
integrals:

∫
b

f(x, y) dx =

t2∫
t1

f(x(t), y(t))x′(t) dt (6)

∫
b

f(x, y) dy =

t2∫
t1

f(x(t), y(t))y′(t) dt . (7)

Furthermore, letP (x, y) andQ(x, y) be two continous functions. The general curve integral is
then given by [1, Section 3.1.8.3]:∫

b

P (x, y) dx + Q(x, y) dy =
∫
b

P (x, y) dx +
∫
b

Q(x, y) dy . (8)

Curve integrals have some important properties which will be useful in later sections: Let
b1(t), t ∈ [t1, t2] andb2(t), t ∈ [t2, t3] be two curves withb1(t2) = b2(t2), and letb = b1 ∪ b2.
The curve integral overb can then be calculated as follows:∫

b

f(x, y) dx =
∫
b1

f(x, y) dx +
∫
b2

f(x, y) dx . (9)

Furthermore, if the direction of the curve is reversed, i.e., ifb′ is the reverse ofb, the sign of the
integral changes: ∫

b

f(x, y) dx = −
∫
b′

f(x, y) dx . (10)

3 Application to Closed Polygons

We now have all the tools at hand to compute the moments ofR by only using the points
on its borderb. Before we can apply these tools, however, we need to consider how we can
parameterizeb(t).

A closed polygonp with pointspi = (xi, yi), i ∈ {0, . . . , n}, andp0 = pn bounding a
regionR in the two-dimensional plane, can be regarded as a piecewise linear curveb, which in
turn can be regarded as the union ofn line segments

b(t) =
n⋃

i=1

bi(t) , (11)

wherebi(t), t ∈ [0, 1] is given by

bi(t) = tpi + (1 − t)pi−1 . (12)

3

Hence it follows that the coordinate functions and their derivatives needed to calculate the curve
integral are given by

xi(t) = txi + (1 − t)xi−1 (13)

yi(t) = tyi + (1 − t)yi−1 (14)

x′
i(t) = xi − xi−1 (15)

y′
i(t) = yi − yi−1 . (16)

Therefore, any general curve integral along a polygonp = b(t) can be calculated in the follow-
ing manner: ∫

b

P dx + Q dy =
n∑

i=1

∫
bi

P dx + Q dy . (17)

Please note that this parametrization of the boundaryp of R is more general than the one
used in other approaches [4, 9] since it is valid for arbitrary polygons, and therefore does not
require different cases to be treated specially.

4 Calculation of Moments

An unnormalized moment of arbitrary order of a regionR is given by (1). In order to apply (5)
we need to decomposexpyq into ∂Q/∂x and∂P/∂y. For reasons of simplicity we choose

∂Q

∂x
= xpyq and

∂P

∂y
= 0 . (18)

Hence

P (x, y) = 0 and Q(x, y) =
1

p + 1
xp+1yq . (19)

Therefore, the momentνp,q of a regionR can be calculated as follows:

νp,q =
∫∫
R

xpyq dx dy =
∫
b

1

p + 1
xp+1yq dy . (20)

By (17), the integral in (20) can be calculated as the sum over the curve integrals along the
line segments of the polygon. Each term of the sum is given by:∫

bi

1

p + 1
xp+1yq dy

=
1

p + 1

1∫
0

xi(t)
p+1yi(t)

qy′
i(t) dt

=
1

p + 1

1∫
0

(txi + (1 − t)xi−1)
p+1(tyi + (1 − t)yi−1)

q(yi − yi−1) dt

=
1

p + 1
(yi − yi−1)

1∫
0

(p+1∑
k=0

(
p + 1

k

)
xk

i x
p+1−k
i−1 tk(1 − t)p+1−k

)
×

4

(q∑
l=0

(
q

l

)
yl

iy
q−l
i−1t

l(1 − t)q−l
)

dt

=
1

p + 1
(yi − yi−1)

1∫
0

p+1∑
k=0

q∑
l=0

(
p + 1

k

)(
q

l

)
xk

i x
p+1−k
i−1 yl

iy
q−l
i−1t

k+l(1 − t)p+q+1−k−l dt

=
1

p + 1
(yi − yi−1)

p+1∑
k=0

q∑
l=0

(
p + 1

k

)(
q

l

)
xk

i x
p+1−k
i−1 yl

iy
q−l
i−1

1∫
0

tk+l(1 − t)p+q+1−k−l dt

=
1

p + 1
(yi − yi−1)

p+1∑
k=0

q∑
l=0

(
p + 1

k

)(
q

l

)
xk

i x
p+1−k
i−1 yl

iy
q−l
i−1B(k + l + 1, p + q + 2 − k − l)

= (yi − yi−1)
p+1∑
k=0

q∑
l=0

ap+1,q
k,l xk

i x
p+1−k
i−1 yl

iy
q−l
i−1 , (21)

whereap+1,q
k,l is a coefficient given by

ap+1,q
k,l =

1

(p + q + 2)(p + 1)
·

(
p + 1

k

)(
q

l

)
(
p + q + 1

k + l

) . (22)

Here, we have used the upper indicesp + 1 andq to denote the range of integers fork andl.
Therefore, for arbitraryp andq the unnormalized moments can be calculated as

νp,q =
n∑

i=1

(yi − yi−1)
p+1∑
k=0

q∑
l=0

ap+1,q
k,l xk

i x
p+1−k
i−1 yl

iy
q−l
i−1 . (23)

However, this equation is not satisfactory for two reasons. Firstly, it doesn’t reflect the inher-
ent symmetry of the problem. If we exchangex andy, we expect to get the same formulae.
Secondly, if we expand the casep = q = 0 we obtain:

ν0,0 =
n∑

i=1

(yi − yi−1)(
1

2
xi−1 +

1

2
xi) . (24)

A closer inspection reveals that the terms forxi−1yi−1 andxiyi will telescope, i.e., cancel in
successive terms of the sum. Therefore, the formula reduces to

ν0,0 =
1

2

n∑
i=1

xi−1yi − xiyi−1 . (25)

For higher order moments even more subtle cancellations occur. Therefore, the question arises
whether there is a canonical formula for calculating the moments by using a mimimum number
of terms.

Proposition 1 It is always possible to transform (21), i.e., each termνp,q,i of (23) into the
canonical form

νp,q,i = (xi−1yi − xiyi−1)
p∑

k=0

q∑
l=0

cp,q
k,lx

k
i x

p−k
i−1 yl

iy
q−l
i−1 , (26)

wherecp,q
k,l is a suitably chosen coefficient.

5

Proof: See Appendix A. 2

The formula for computing the moments given in (26) is minimal since no terms can be
factored out of the double sum.

In the proof of Proposition 1, the coefficientscp,q
k,l are defined by a sum over a range of

ap+1,q
i,j . The next proposition establishes that there exists a simple, symmetric closed form for

these coefficients.

Proposition 2 The coefficientscp,q
k,l are given by

cp,q
k,l =

1

(p + q + 2)(p + q + 1)

(
p + q

p

)
(
k + l

l

)(
p + q − k − l

q − l

)
. (27)

Proof: See Appendix B. 2

Therefore, the unnormalized moments can be calculated by

νp,q =
1

(p + q + 2)(p + q + 1)

(
p + q

p

) ×

n∑
i=1

(xi−1yi − xiyi−1)
p∑

k=0

q∑
l=0

(
k + l

l

)(
p + q − k − l

q − l

)
xk

i x
p−k
i−1 yl

iy
q−l
i−1 . (28)

The normalized moments can, of course, be obtained by dividing the result bya = ν0,0.
For reference purposes we list the most commonly used normalized and central moments

up to order 2:

a =
1

2

n∑
i=1

xi−1yi − xiyi−1 (29)

α1,0 =
1

6a

n∑
i=1

(xi−1yi − xiyi−1)(xi−1 + xi) (30)

α0,1 =
1

6a

n∑
i=1

(xi−1yi − xiyi−1)(yi−1 + yi) (31)

α2,0 =
1

12a

n∑
i=1

(xi−1yi − xiyi−1)(x
2
i−1 + xi−1xi + x2

i) (32)

α1,1 =
1

24a

n∑
i=1

(xi−1yi − xiyi−1)(2xi−1yi−1 + xi−1yi + xiyi−1 + 2xiyi) (33)

α0,2 =
1

12a

n∑
i=1

(xi−1yi − xiyi−1)(y
2
i−1 + yi−1yi + y2

i) (34)

µ2,0 = α2,0 − α2
1,0 (35)

µ1,1 = α1,1 − α1,0α0,1 (36)

µ0,2 = α0,2 − α2
0,1 . (37)

6

It should be noted that (28) only holds if the polygonp encloses the regionR counterclock-
wise. However, from (10) it is obvious that only the sign of the area changes ifp enclosesR
clockwise. Hence we have a simple criterion for the decision of whether the result of (28) is
valid, namely the sign ofa. If a is negative, every calculated moment needs to be multiplied
by −1. Furthermore, the calculation of central moments according to (4) is only efficient for
the second order moments. For higher order moments it is more efficient to plugxi − α1,0 and
yi − α0,1 directly into (28).

5 Examples

Let us now demonstrate that the moments calculated by considering only the pointspi of the
enclosing polygon yield correct results. Consider the rectangle given byp0 = (2, 0), p1 =
(10, 4), p2 = (8, 8), andp3 = (0, 4). In order to be able to compute the moments by the
formulae derived above, we need to introduce an additional pointp4 = p0 to close the polygon.
Figure 1 displays this rectangle.

-

6

����������������A
A

A
A

A
A

A
A����������������

A
A
A
A
A
A
A
A

(2, 0)

(10, 4)

(8, 8)

(0, 4)

Figure 1: The rectangle used in the first example

From the geometry of this rectangle it is obvious thata = 40, and that the centroid is
(α1,0, α0,1) = (5, 4). Hence, we will not derive these values by integration. The second moment
α2,0 can be calculated as follows:

α2,0 =
1

a

∫∫
R

x2 dx dy

=
1

a

(2∫
0

x/2+4∫
4−2x

x2 dx dy +

8∫
2

x/2+4∫
x/2−1

x2 dx dy +

10∫
8

24−2x∫
x/2−1

x2 dx dy
)

=
1

40

(2∫
0

(
x2y

∣∣∣∣x/2+4

y=4−2x

)
dx +

8∫
2

(
x2y

∣∣∣∣x/2+4

y=x/2−1

)
dx +

10∫
8

(
x2y

∣∣∣∣24−2x

y=x/2−1

)
dx
)

7

=
1

40

(2∫
0

x2(
1

2
x + 4) − x2(4 − 2x) dx +

8∫
2

x2(
1

2
x + 4) − x2(

1

2
x − 1) dx

+

10∫
8

x2(24 − 2x) − x2(
1

2
x − 1) dx

)

=
1

40

((
5

8
x4
∣∣∣∣2
0

)
+
(

5

3
x3
∣∣∣∣8
2

)
+
(
−5

8
x4 +

25

3
x3
∣∣∣∣10
8

))

= 30
2

3
. (38)

Similarly, we obtain

α1,1 = 22 (39)

α0,2 = 18
2

3
. (40)

We now calculatea by using (29):

a =
1

2
(2 · 4 − 10 · 0 + 10 · 8 − 8 · 4 + 8 · 4 − 0 · 8 + 0 · 0 − 2 · 4) = 40 . (41)

Therefore, the area computed using (29) yields the correct result. Furthermore, we can see that
the rectangle is indeed oriented counterclockwise sincea > 0.

Forα1,0 andα0,1, by (30) and (31) we have

α1,0 =
1

6a
((2 + 10) · (2 · 4 − 10 · 0) + (10 + 8) · (10 · 8 − 8 · 4) +

(8 + 0) · (8 · 4 − 0 · 8) + (0 + 2) · (0 · 0 − 2 · 4))

= 5 (42)

α0,1 = · · ·
= 4 . (43)

Again, (30) and (31) yield the correct results with much less computational burden.
To calculateα2,0 andα0,2 we use (32) and (34):

α2,0 =
1

12a
((22 + 2 · 10 + 102) · (2 · 4 − 10 · 0) + (102 + 10 · 8 + 82) · (10 · 8 − 8 · 4) +

(82 + 8 · 0 + 02) · (8 · 4 − 0 · 8) + (02 + 0 · 2 + 22) · (0 · 0 − 2 · 4))

= 30
2

3
(44)

α0,2 = · · ·
= 18

2

3
. (45)

Forα1,1 we obtain by (33):

α1,1 =
1

24a
((2 · 2 · 0 + 2 · 4 + 10 · 0 + 2 · 10 · 4) · (2 · 4 − 10 · 0) +

8

(2 · 10 · 4 + 10 · 8 + 8 · 4 + 2 · 8 · 8) · (10 · 8 − 8 · 4) +

(2 · 8 · 8 + 8 · 4 + 0 · 8 + 2 · 0 · 4) · (8 · 4 − 0 · 8) +

(2 · 0 · 4 + 0 · 0 + 2 · 4 + 2 · 2 · 0) · (0 · 0 − 2 · 4))

= 22 . (46)

Again, for the second order moments, (32), (34), and (33) yield the correct results. The central
second order moments are given by:

µ2,0 = α2,0 − α2
1,0 = 30

2

3
− 25 =

17

3
(47)

µ1,1 = α1,1 − α1,0α0,1 = 22 − 20 = 2 (48)

µ0,2 = α0,2 − α2
0,1 = 18

2

3
− 16 =

8

3
. (49)

From these three values, according to [3, Appendix A] we can compute the parameters of
an ellipse with the same second order moments by calculating the eigenvalues and eigenvectors
of the following matrix:

1

4(µ2,0µ0,2 − µ2
1,1)

(
µ0,2 −µ1,1

−µ1,1 µ2,0

)
=

3

400

(
8 −6
−6 17

)
. (50)

The eigenvalues are given by the solutions of∣∣∣∣∣ 8 − λ −6
−6 17 − λ

∣∣∣∣∣ = (8 − λ)(17 − λ) − 36 = λ2 − 25λ + 100 . (51)

Hence,λ1 = 5 andλ2 = 20. Therefore, the corresponding major axes of the ellipse have the
following lengths:a = 2/(

√
5 · 3/400) = 8

√
5/3 andb = 2/(

√
20 · 3/400) = 4

√
5/3. The

directions of the major axesa andb are given by(2, 1) and(1,−2), respectively, as is easily
obtainable by calculating the corresponding eigenvectors. Thus, the dominant directions of this
region were obtained correctly. Obviously, this can be done much easier for a rectangle, but the
approach is also valid for arbitrary shapes, as the next example shows.

Figure 2(a) displays a calibration target, and Fig. 2(b) the upper-rightmost calibration mark
[8]. From this mark, edges were extracted with sub-pixel precision by extracting bright lines
in the gradient image [10]. Figure 3(a) displays the resulting edges. In this example,103 edge
points were found, leading to a closed polygon with102 line segments. From these edge points,
the moments of the extracted shape can be calculated as

a = 566.32474

αr = 26.40761

αc = 28.17205

αrr = 770.99165

αrc = 729.00953

αcc = 824.30414

µrr = 73.62978

µrc = −14.94700

µcc = 30.63971 ,

9

wherer andc denote the row and column axes, respectively. According to [3, Appendix A],
the corresponding ellipse with the same moments has a major axis of lengtha = 35.39849 and
a minor axis ofb = 20.37789, with the angle of the major axis to the column axis given by
ϕ = 72.59321◦. Figure 3(b) displays this ellipse superimposed onto the extracted edge points.
As can be seen, the difference is hardly noticeable.

(a) (b)

Figure 2: A calibration target (a) and one calibration mark (b).

(a) (b)

Figure 3: Extracted edges (a) and ellipse with the same moments (b).

10

6 Conclusions

This paper has presented an explicit method for the calculation of moments of arbitrary closed
polygons. Contrary to most implementations, which obtain the moments from discrete pixel
data, this approach calculates moments by using only the border of a region. Moments of sub-
pixel precise features may thus be computed without loss of accuracy. Furthermore, since no
explicit region needs to be constructed, and because the border of a region usually consists of
significantly fewer points than the entire region, the approach is very efficient. The presented
algorithm will be used in the vision system described in [5, 6, 7] to approximate edges by
straight lines and ellipse segments using an approach similar to [13].

A Proof of Proposition 1

We will calculate the coefficientsbp+1,q+1
k,l of xk

i x
p+1−k
i−1 yl

iy
q+1−l
i−1 if we expand (26) and (21). In

the first case we have:

bp+1,q+1
k,l = cp,q

k,l−1 − cp,q
k−1,l for 1 ≤ k ≤ p ∧ 1 ≤ l ≤ q (52)

bp+1,q+1
0,l = cp,q

0,l−1 for 1 ≤ l ≤ q (53)

bp+1,q+1
p+1,l = −cp,q

p,l for 0 ≤ l ≤ q (54)

bp+1,q+1
k,0 = −cp,q

k−1,0 for 1 ≤ k ≤ p (55)

bp+1,q+1
k,q+1 = cp,q

k,q for 0 ≤ k ≤ p (56)

bp+1,q+1
0,0 = bp+1,q+1

p+1,q+1 = 0 . (57)

In the second case we obtain:

bp+1,q+1
k,l = ap+1,q

k,l−1 − ap+1,q
k,l for 0 ≤ k ≤ p + 1 ∧ 1 ≤ l ≤ q (58)

bp+1,q+1
k,0 = −ap+1,q

k,0 for 1 ≤ k ≤ p + 1 (59)

bp+1,q+1
k,q+1 = ap+1,q

k,q for 0 ≤ k ≤ p (60)

bp+1,q+1
0,0 = bp+1,q+1

p+1,q+1 = 0 . (61)

The last equation holds becauseap+1,q
0,0 = ap+1,q

p+1,q, and therefore these terms will telescope.
If we regarda, b, andc as vectors, the above equations define a set of linear equations

Dc = Ea , (62)

whereD is a ((p + 2)(q + 2) − 2) × ((p + 1)(q + 1)) matrix, andE is a ((p + 2)(q + 2) −
2) × ((p + 2)(q + 1)) matrix. The right hand side of (62) is completely known from (58)–(60).
Hence (62) defines an overdetermined system of linear equations forc. Therefore, Proposition 1
reduces to the question whether the extrap + q + 1 equations by which (62) is overdetermined
are automatically fulfilled.

In order to show this, we can pick any(p + 1)(q + 1) equations from (62) to calculatecp,q
k,l .

For example, we can choose:

cp,q
k,l = cp,q

k−1,l+1 + bp+1,q+1
k,l+1 for 1 ≤ k ≤ p ∧ 0 ≤ l ≤ q − 1 (63)

11

cp,q
0,l = bp+1,q+1

0,l+1 for 0 ≤ l ≤ q − 1 (64)

cp,q
k,q = bp+1,q+1

k,q+1 for 0 ≤ k ≤ p . (65)

The first of these equations defines a recursion on previous values ofbp+1,q+1
k,l , for which the last

two equations give the starting values. By expanding the recursion and plugging in the starting
values we obtain:

cp,q
k,l =




k∑
i=0

bp+1,q+1
k−i,l+1+i for k < q − l

q−l∑
i=0

bp+1,q+1
k−i,l+1+i for k ≥ q − l .

(66)

By substitutingbp+1,q+1
k−i,l+1+i with its definition according to (58)–(60), this can be transformed to:

cp,q
k,l =




k∑
i=0

ap+1,q
k−i,l+i −

k∑
i=0

ap+1,q
k−i,l+1+i for k < q − l

q−l∑
i=0

ap+1,q
k−i,l+i −

q−l−1∑
i=0

ap+1,q
k−i,l+1+i for k < q − l .

(67)

In order to check whether (62) is solvable, we need to compare the values ofcp,q
k,l computed

according to (67) with those obtained from (55) and (54):

cp,q
k,0 = ap+1,q

k+1,0 for 0 ≤ k ≤ p (68)

cp,q
p,l = ap+1,q

p+1,l − ap+1,q
p+1,l−1 for 1 ≤ l ≤ q . (69)

The key for this proof is to recognize that each of the two sums in (67) forms an almost complete
Vandermonde convolution [2, Chapter 5]:

∑
0≤n−k≤r
0≤m+k≤s

(
r

n − k

)(
s

m + k

)
=

(
r + s

m + n

)
. (70)

For cp,q
k,0 we need to add−ap+1,q

k+1,0 and get:

cp,q
k,0 =

k∑
i=0

ap+1,q
k−i,l+i −

k∑
i=−1

ap+1,q
k−i,l+1+i + ap+1,q

k+1,0

=
1

(p + 1)(p + q + 2)
· 1(

p + q + 1

k

) k∑
i=0

(
p + 1

k − i

)(
q

i

)

− 1

(p + 1)(p + q + 2)
· 1(

p + q + 1

k + 1

) k∑
i=−1

(
p + 1

k − i

)(
q

i + 1

)
+ ap+1,q

k+1,0

=
1

(p + 1)(p + q + 2)




(
p + q + 1

k

)
(
p + q + 1

k

) −

(
p + q + 1

k + 1

)
(
p + q + 1

k + 1

)

+ ap+1,q

k+1,0

= ap+1,q
k+1,0 . (71)

12

This is the same value as obtained from (68). The proof forcp,q
p,l is analogous. This time,

however, we need to addap+1,q
p+1,l−1−ap+1,q

p+1,l to get a full Vandermonde convolution. This concludes
the proof of Proposition 1.

B Proof of Proposition 2

The structure of (63)–(65) suggests a proof by induction. The basis of the induction will be for
cp,q
0,l (0 ≤ l ≤ q − 1) andcp,q

k,q (0 ≤ k ≤ p). Forcp,q
k,q we have:

cp,q
k,q = ap+1,q

k,q =
1

(p + q + 2)(p + 1)
·

(
p + 1

k

)(
q

q

)
(
p + q + 1

k + q

)

=
1

(p + q + 2)(p + 1)
·

(p + 1)!

k! (p + 1 − k)!
· q!

0! q!
(p + q + 1)!

(k + q)! (p + 1 − k)!

=
1

(p + q + 2)(p + q + 1)
· p! q! (k + q)!

(p + q)! k! q!

=
1

(p + q + 2)(p + q + 1)

(
p + q

p

)
(
k + q

q

)(
p − k

0

)
. (72)

Similarily, for cp,q
l,0 we have:

cp,q
0,l = ap+1,q

0,l − ap+1,q
0,l+1

=
1

(p + q + 2)(p + 1)
·

(
p + 1

0

)(
q

l

)
(
p + q + 1

l

) − 1

(p + q + 2)(p + 1)
·

(
p + 1

0

)(
q

l + 1

)
(
p + q + 1

l + 1

)

=
1

(p + q + 2)(p + 1)




(p + 1)!

0! (p + 1)!
· q!

l! (q − l)!
(p + q + 1)!

l! (p + q + 1 − l)!

−
(p + 1)!

0! (p + 1)!
· q!

(l + 1)! (q − l − 1)!
(p + q + 1)!

(l + 1)! (p + q − l)!




=
1

(p + q + 2)(p + q + 1)

(
p! q! l! (p + q + 1 − l)!

(p + q)! l! (p + 1)! (q − l)!

− p! q! (l + 1)! (p + q − l)!

(p + q)! (l + 1)! (p + 1)! (q − l − 1)!

)

=
1

(p + q + 2)(p + q + 1)

(
p + q

p

)
(

(p + q + 1 − l)!

(p + 1)! (q − l)!
− (p + q − l)!

(p + 1)! (q − l − 1)!

)

13

=
1

(p + q + 2)(p + q + 1)

(
p + q

p

) · (p + q + 1 − l)! − (q − l)(p + q + l)!

(p + 1)! (q − l)!

=
1

(p + q + 2)(p + q + 1)

(
p + q

p

) · ((p + q + 1 − l) − (q − l))(p + q − l)!

(p + 1)p! (q − l)!

=
1

(p + q + 2)(p + q + 1)

(
p + q

p

)
(
l

l

)(
p + q − l

q − l

)
. (73)

Now assume that the identity holds fork − 1 andl + 1. Then we have:

cp,q
k,l = cp,q

k−1,l+1 + ap+1,q
k,l − ap+1,q

k,l+1

=
1

(p + q + 2)(p + q + 1)

(
p + q

p

)
(
k + l

l + 1

)(
p + q − k − l

q − l − 1

)

+
1

(p + q + 2)(p + 1)




(
p + 1

k

)(
q

l

)
(
p + q + 1

k + l

) −

(
p + 1

k

)(
q

l + 1

)
(
p + q + 1

k + l + 1

)



=
1

p + q + 2




1

p + q + 1

(k + l)!

(l + 1)! (k − 1)!
· (p + q − k − l)!

(q − l − 1)! (p + 1 − k)!
(p + q)!

p! q!

+
1

p + 1

(p + 1)!

k! (p + 1 − k)!
· q!

l! (q − l)!
(p + q + 1)!

(k + l)! (p + q + 1 − k − l)!

− 1

p + 1

(p + 1)!

k! (p + 1 − k)!
· q!

(l + 1)! (q − l − 1)!
(p + k + 1)!

(k + l + 1)! (p + q − k − l)!




=
1

(p + q + 2)(p + q + 1)

(
p! q! (k + l)! (p + q − k − l)!

(p + q)! (l + 1)! (k − 1)! (q − l − 1)! (p + 1 − k)!

+
p! q! (k + l)! (p + q + 1 − k − l)!

(p + q)! k! (p + 1 − k)! l! (q − l)!

− p! q! (k + l + 1)! (p + q − k − l)!

(p + q)! k! (p + 1 − k)! (l + 1)! (q − l − 1)!

)

=
1

(p + q + 2)(p + q + 1)

(
p + q

p

)
(

k(q − l)(k + l)! (p + q − k − l)!

(l + 1)! k! (q − l)! (p + 1 − k)!

14

+
(l + 1)(k + l)! (p + q + 1 − k − l)!

(l + 1)! k! (q − l)! (p + 1 − k)!

− (q − l)(k + l + 1)! (p + q − k − l)!

(l + 1)! k! (q − l)! (p + 1 − k)!

)

=
1

(p + q + 2)(p + q + 1)

(
p + q

p

) ×

(
k(q − l) + (l + 1)(p + q + 1 − k − l) − (q − l)(k + l + 1)

(l + 1)(p + 1 − k)
×

(k + l)! (p + q − k − l)!

k! l! (q − l)! (p − k)!

)

=
1

(p + q + 2)(p + q + 1)

(
p + q

p

)
(
k + l

l

)(
p + q − k − l

q − l

)
. (74)

References

[1] I. N. Bronstein and K. A. Semendjajew.Taschenbuch der Mathematik. B. G. Teubner
Verlagsgesellschaft, Leipzig, 22nd edition, 1985.

[2] Ronald L. Graham, Donald E. Knuth, and Oren Patashnik.Concrete Mathematics.
Addison-Wesley Publishing Company, Reading, MA, USA, 2nd edition, 1994.

[3] Robert M. Haralick and Linda G. Shapiro.Computer and Robot Vision, volume I.
Addison-Wesley Publishing Company, Reading, MA, USA, 1992.

[4] X. Y. Jiang and H. Bunke. Simple and fast computation of moments.Pattern Recognition,
24(8):801–806, 1991.

[5] Stefan Lanser, Olaf Munkelt, and Christoph Zierl. Robust video-based object recogni-
tion using CAD models. In U. Rembold, R. Dillmann, L.O. Hertzberger, and T. Kanade,
editors,Intelligent Autonomous Systems IAS-4, pages 529–536. IOS Press, 1995.

[6] Stefan Lanser and Christoph Zierl. MORAL: Ein System zur videobasierten Objekterken-
nung im Kontext autonomer, mobiler Systeme. In G. Schmidt and F. Freyberger, editors,
Autonome Mobile Systeme, Informatik aktuell. Springer-Verlag, 1996.

[7] Stefan Lanser and Christoph Zierl. On the use of topological constraints within object
recognition tasks. In13th International Conference on Pattern Recognition, 1996.

[8] Stefan Lanser, Christoph Zierl, and Roland Beutlhauser. Multibildkalibrierung einer CCD-
Kamera. In G. Sagerer, S. Posch, and F. Kummert, editors,Mustererkennung 1995, Infor-
matik aktuell, pages 481–491. Springer-Verlag, 1995.

[9] Mark H. Singer. A general approach to moment calculation for polygons and line seg-
ments.Pattern Recognition, 26(7):1019–1028, 1993.

[10] Carsten Steger. Extracting curvilinear structures: A differential geometric approach. In
Bernard Buxton and Roberto Cipolla, editors,Fourth European Conference on Computer

15

Vision, volume 1064 ofLecture Notes in Computer Science, pages 630–641. Springer-
Verlag, 1996.

[11] N. J. C. Strachan, P. Nesvadba, and A. R. Allen. A method for working out the moments
of a polygon using an integration technique.Pattern Recognition Letters, 11:351–354,
May 1990.

[12] Herbert Suesse and Klaus Voss. Fitting von Objekten durch Super-Qadriken. In Bernd
Jähne, Peter Geißler, Horst Haußecker, and Frank Hering, editors,Mustererkennung, In-
formatik aktuell, pages 29–36. Springer-Verlag, 1996.

[13] K. Voss, H. Suesse, and R. Neubauer. Moment-based invariant fitting of elliptical seg-
ments. In Václav Hlaváč and Radim̌Sára, editors,6th International Conference on Com-
puter Analysis of Images and Patterns, volume 970 ofLecture Notes in Computer Science,
pages 562–567. Springer-Verlag, 1995.

[14] Klauss Voss and Herbert S¨uße. Adaptive Modelle und Invarianten für zweidimensionale
Bilder. Verlag Shaker, Aachen, 1995.

16

	Abstract
	1. Introduction
	2. Mathematical Tools
	3. Application to Closed Polygons
	4. Calculation of Moments
	5. Examples
	6. Conclusions
	A. Proof of Proposition 1
	B. Proof of Proposition 2
	References

