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On the Calculation of Moments of Polygons

Carsten Steger

Abstract—This paper describes a method to calculate various shape features, namely the area,
center of gravity, and second order moments, from polygons that enclose a region of the two-
dimensional space. Contrary to most approaches, which compute these features from discrete
pixel data, here they are calculated by solely using the points of the enclosing polygon, which
may be sub-pixel accurate. This has two main advantages. Firstly, since the precise points of the
boundary of the shape are used the resulting features will be computed with maximum accuracy.
Furthermore, since the boundary typically consists of much less points than the whole region
the procedure is computationally more efficient.

1 Introduction

A problem that frequently occurs in image processing tasks is to calculate the area, centroid
(center of gravity), and (centralized) second order moments of a region in an image. These are
important shape features in itself. For example, they can be used to fit elliptic curve segments
to extracted contours [8]. Often they are also used to compute the dominant directions and
approximate diameters of a region. These in turn are important for camera calibration tasks, for
example, where they can be used to determine approximate values for some parameters of the
exterior orientation, and thus to obtain good starting values for the calibration procedure [6].

The area of an arbitrary regionR is given by

a =
∫∫
R

1 dx dy , (1)

its centroid by

αx =
1

a

∫∫
R

x dx dy (2)

αy =
1

a

∫∫
R

y dx dy , (3)

and its second order moments by

αxx =
1

a

∫∫
R

x2 dx dy (4)

αxy =
1

a

∫∫
R

xy dx dy (5)

αyy =
1

a

∫∫
R

y2 dx dy . (6)
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If the first order momentsαx andαy are known, the centralized second order moments are given
by

µxx =
1

a

∫∫
R

(x − αx)
2 dx dy (7)

µxy =
1

a

∫∫
R

(x − αx)(y − αy) dx dy (8)

µyy =
1

a

∫∫
R

(y − αy)
2 dx dy . (9)

It is unnecessary to compute these explicitely, however, since they can easily be obtained from
the normal second order moments by

µxx = αxx − α2
x (10)

µxy = αxy − αxαy (11)

µyy = αyy − α2
y . (12)

Usually, the regionR will be discrete, i.e., consist of a set of pixels, each of which has an
area of1. The integrals in the equations above can then simply be calculated by summation
over the regionR. However, if regions are extracted by a sub-pixel precise feature extraction
algorithm, e.g., by the line detector given in [7], only the closed boundaryb of the region is
known, usually as a sub-pixel precise contour, which can be regarded as a polygon. Therefore,
the equations above cannot be applied to calculate the moments. There are two obvious solu-
tions to this problem. The first one is to discretize the regionR to the pixel raster, which is
undesirable since the sub-pixel accuracy is lost. The second one is to triangulate the polygon,
and to calculate the moments by computing them for each triangle, which can be done easily,
and to add up the results. However, triangulation is a costly operation, and therefore a scheme
that only uses the points on the polygonp to compute the moments is highly desirable.

2 Mathematical Tools

A way to solve the problem stated above is to apply the powerful result of Green’s theorem,
sometimes also referred to as the Green formula, the Gauss formula, or the Stokes formula. This
theorem lets us compute the integral of a function over a sub-domainR of the two-dimensional
space by reducing it to a curve integral over the borderb of R [1, Section 3.1.13.1]. More
formally, it can be stated as follows: LetP (x, y) andQ(x, y) be two continuously differentiable
functions on the two-dimensional regionR, and letb(t) be the boundary ofR. If b is piecewise
differentiable and oriented such that it is traversed in positive direction (counterclockwise), an
integral over the regionR can be reduced to a curve integral over the boundaryb of R in the
following manner: ∫∫

R

∂Q

∂x
− ∂P

∂y
dx dy =

∫
b

P dx + Q dy . (13)

It is obvious that to compute an integral of an arbitrary functionF (x, y) overR, as is the case for
the moments,F (x, y) will somehow have to be decomposed into∂P/∂y and∂Q/∂x. It is also
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obvious that this decomposition cannot be unique. Therefore, the choice of the decomposition
is essentially arbitrary.

The integral on the right side of (13) is a general curve integral. It is defined as follows [1,
Section 3.1.8.4]: Letb(t) = (x(t), y(t)), t ∈ [t1, t2] be a curve, and letf(x, y) be a continu-
ous function. Then the following two curve integrals exist and can be transformed to definite
integrals:

∫
b

f(x, y) dx =

t2∫
t1

f(x(t), y(t))x′(t) dt (14)

∫
b

f(x, y) dy =

t2∫
t1

f(x(t), y(t))y′(t) dt . (15)

Furthermore, letP (x, y) andQ(x, y) be two continous functions. The general curve integral is
then given by [1, Section 3.1.8.3]:

∫
b

P (x, y) dx + Q(x, y) dy =
∫
b

P (x, y) dx +
∫
b

Q(x, y) dy . (16)

Curve integrals have some important properties, which will be useful in later sections: Let
b1(t), t ∈ [t1, t2] andb2(t), t ∈ [t2, t3] be two curves withb1(t2) = b2(t2), and letb = b1 ∪ b2.
Then the curve integral overb can be calculated as follows:

∫
b

f(x, y) dx =
∫
b1

f(x, y) dx +
∫
b2

f(x, y) dy . (17)

Furthermore, if the direction of the curve is reversed, i.e., ifb′ is the reverse ofb, the sign of the
integral changes: ∫

b

f(x, y) dx = −
∫
b′

f(x, y) dx . (18)

3 Application to Closed Polygons

We now have all the tools at hand to compute the moments ofR by just using the points on its
borderb. Before we can apply these tools, however, we need to consider how we can parame-
terizeb(t).

A closed polygonp with pointspi = (xi, yi), i ∈ {0, . . . , n}, andp0 = pn bounding a
regionR in the two-dimensional plane can be regarded as a piecewise linear curveb, which in
turn can be regarded as the union ofn line segments

b(t) =
n⋃

i=1

bi(t) , (19)

wherebi(t), t ∈ [0, 1] is given by

bi(t) = pi−1 + t(pi − pi−1) . (20)
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Hence it follows that the coordinate functions and their derivatives needed to calculate the curve
integral are given by

xi(t) = xi−1 + t(xi − xi−1) (21)

yi(t) = yi−1 + t(yi − yi−1) (22)

x′
i(t) = xi − xi−1 (23)

y′
i(t) = yi − yi−1 . (24)

Therefore, any general curve integral along a polygonp = b(t) can be calculated in the
following manner: ∫

b

P dx + Q dy =
n∑

i=1

∫
bi

P dx + Q dy . (25)

4 Calculation of Moments

The area of a region is given by (1). In order to apply (13) we need to decompose1 into ∂Q/∂x
and∂P/∂y. Purely for reasons of symmetry we choose

∂Q

∂x
=

1

2
and

∂P

∂y
= −1

2
. (26)

HenceP (x, y) = −y/2 and Q(x, y) = x/2. Therefore, the areaa of a regionR can be
calculated as follows:

a =
∫∫
R

1 dx dy =
∫∫
R

1

2
−
(
−1

2

)
dx dy

=
∫
b

−1

2
y dx +

1

2
x dy =

1

2

∫
b

x dy − y dx

=
1

2

∫
b

x dy − 1

2

∫
b

y dx . (27)

By (25), each of the two integrals in (27) can be calculated as the sum over the curve inte-
grals along the line segments of the polygon. For the first integral each term of the sum is given
by:

∫
bi

x dy =

1∫
0

xi(t)y
′
i(t) dt

=

1∫
0

(xi−1 + t(xi − xi−1))(yi − yi−1) dt

= (yi − yi−1)
(
txi−1 +

1

2
t2(xi − xi−1)

∣∣∣∣1
t=0

)

= (yi − yi−1)(xi−1 +
1

2
(xi − xi−1))

=
1

2
(xi−1 + xi)(yi − yi−1) . (28)
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By a similar calculation, each term of the second integral is given by:

∫
bi

y dx =

1∫
0

yi(t)x
′
i(t) dt

=

1∫
0

(yi−1 + t(yi − yi−1))(xi − xi−1) dt

= · · ·
=

1

2
(yi−1 + yi)(xi − xi−1) . (29)

Hence, each term of the sum is given by:

∫
bi

x dy − y dx =
1

2
((xi−1 + xi)(yi − yi−1) − (yi−1 + yi)(xi − xi−1))

=
1

2
(xi−1yi − xi−1yi−1 + xiyi − xiyi−1

− xiyi−1 + xi−1yi−1 − xiyi + xi−1yi)

= xi−1yi − xiyi−1 . (30)

Therefore, by (25) and (30), the area of a polygon can be calculated as

a =
1

2

n∑
i=1

xi−1yi − xiyi−1 . (31)

It should be noted that this equation only holds if the polygonp encloses the regionR coun-
terclockwise. However, from (18) and from the antisymmetry of (31) it is obvious that only
the sign of the area changes ifp enclosesR clockwise. Hence we have a simple criterion to
decide whether the result of (31) is valid, namely the sign ofa. If a is negative every calculated
moment needs to be multiplied by−1.

We now turn to the calculation of the first moments, or the centroid of the regionR. Be-
cause the calculations become more lengthy for these features, the exact derivation is given in
Appendix A. We will only present the final results here.

According to (2), for the first momentαx there seems to be a preferred direction. Therefore,
we decomposex into ∂Q/∂x and∂P/∂y as follows:

∂Q

∂x
= 0 and

∂P

∂y
= −x . (32)

HenceP (x, y) = −xy andQ(x, y) = 0. Therefore,

αx =
1

a

∫∫
R

x dx dy =
1

a

∫
b

−xy dx

=
1

6a

n∑
i=1

(xi−1 + xi)(xi−1yi − xiyi−1) . (33)
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Analogously, forαy we chooseP (x, y) = 0 andQ(x, y) = xy, and obtain:

αy =
1

a

∫∫
R

y dx dy =
1

a

∫
b

xy dy

=
1

6a

n∑
i=1

(yi−1 + yi)(xi−1yi − xiyi−1) . (34)

The final features to calculate are the second moments. Again, only the final results are
given here. The detailed calculations can be found in Appexdix B. Let us first considerαxx.
Analogously to (32), we choose the following decomposition ofx2:

∂Q

∂x
= 0 and

∂P

∂y
= −x2 . (35)

Hence,P (x, y) = −x2y andQ(x, y) = 0. Therefore,

αxx =
1

a

∫∫
R

x2 dx dy =
1

a

∫
b

−x2y dx

=
1

12a

n∑
i=1

(x2
i−1 + xi−1xi + x2

i )(xi−1yi − xiyi−1) . (36)

By the same line of reasoning we chooseP (x, y) = 0 andQ(x, y) = xy2 for αyy, and
obtain:

αyy =
1

a

∫∫
R

y2 dx dy =
1

a

∫
b

xy2 dy

=
1

12a

n∑
i=1

(y2
i−1 + yi−1yi + y2

i )(xi−1yi − xiyi−1) . (37)

For the mixed momentαxy there is no preferred direction, similarly to (26). Therefore, we
choose

∂Q

∂x
=

1

2
xy and

∂P

∂y
= −1

2
xy (38)

as the decomposition ofxy, and haveP (x, y) = −xy2/4 andQ(x, y) = x2y/4. Therefore, the
mixed second order moment is given by

αxy =
1

a

∫∫
R

xy dx dy = − 1

4a

∫
b

xy2 dx +
1

4a

∫
b

x2y dy

=
1

24a

n∑
i=1

(2xi−1yi−1 + xi−1yi + xiyi−1 + 2xiyi)(xi−1yi − xiyi−1) . (39)

5 Examples

Let us now demonstrate that the moments calculated by only considering the pointspi of the
enclosing polygon yield correct results. Consider the rectangle given byp0 = (2, 0), p1 =
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Figure 1: The rectangle used in the example

(10, 4), p2 = (8, 8), andp3 = (0, 4). In order to be able to compute the moments by the
formulas drived above, we need to introduce an additional pointp4 = p0 to close the polygon.
Figure 1 displays this rectangle.

From the geometry of this rectangle it is obvious thata = 40, and that the centroid is
(αx, αy) = (5, 4). Hence, we will not derive these values by integration. The second moment
αxx can be calculated as follows:

αxx =
1

a

∫∫
R

x2 dx dy

=
1

a

( 2∫
0

x/2+4∫
4−2x

x2 dx dy +

8∫
2

x/2+4∫
x/2−1

x2 dx dy +

10∫
8

24−2x∫
x/2−1

x2 dx dy
)

=
1

40

( 2∫
0

(
x2y

∣∣∣∣x/2+4

y=4−2x

)
dx +

8∫
2

(
x2y

∣∣∣∣x/2+4

y=x/2−1

)
dx +

10∫
8

(
x2y

∣∣∣∣24−2x

y=x/2−1

)
dx
)

=
1

40

( 2∫
0

x2(
1

2
x + 4) − x2(4 − 2x) dx +

8∫
2

x2(
1

2
x + 4) − x2(

1

2
x − 1) dx

+

10∫
8

x2(24 − 2x) − x2(
1

2
x − 1) dx

)

=
1

40

((
5

8
x4

∣∣∣∣2
0

)
+
(

5

3
x3

∣∣∣∣8
2

)
+
(
−5

8
x4 +

25

3
x3

∣∣∣∣10
8

))

= 30
2

3
. (40)

Similarly, we obtain

αxy = 22 (41)
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αyy = 18
2

3
. (42)

We now calculatea by using (31):

a =
1

2
(2 · 4 − 10 · 0 + 10 · 8 − 8 · 4 + 8 · 4 − 0 · 8 + 0 · 0 − 2 · 4) = 40 . (43)

Therefore, the area computed by using (31) yields the correct result with much less computa-
tional effort. Furthermore, we can see that the rectangle is indeed oriented counterclockwise
sincea > 0.

Forαx andαy, by (33) and (34) we have

αx =
1

6a
((2 + 10) · (2 · 4 − 10 · 0) + (10 + 8) · (10 · 8 − 8 · 4) +

(8 + 0) · (8 · 4 − 0 · 8) + (0 + 2) · (0 · 0 − 2 · 4))

= 5 (44)

αy = · · ·
= 4 . (45)

Again, (33) and (34) yield the correct results with much less computational burden.
To calculateαxx andαyy we use (36) and (37):

αxx =
1

12a
((22 + 2 · 10 + 102) · (2 · 4 − 10 · 0) + (102 + 10 · 8 + 82) · (10 · 8 − 8 · 4) +

(82 + 8 · 0 + 02) · (8 · 4 − 0 · 8) + (02 + 0 · 2 + 22) · (0 · 0 − 2 · 4))

= 30
2

3
(46)

αyy = · · ·
= 18

2

3
. (47)

Forαxy we obtain by (39):

αxy =
1

24a
((2 · 2 · 0 + 2 · 4 + 10 · 0 + 2 · 10 · 4) · (2 · 4 − 10 · 0) +

(2 · 10 · 4 + 10 · 8 + 8 · 4 + 2 · 8 · 8) · (10 · 8 − 8 · 4) +

(2 · 8 · 8 + 8 · 4 + 0 · 8 + 2 · 0 · 4) · (8 · 4 − 0 · 8) +

(2 · 0 · 4 + 0 · 0 + 2 · 4 + 2 · 2 · 0) · (0 · 0 − 2 · 4))

= 22 . (48)

Again, for the second order moments (36), (37), and (39) yield the correct results. The central-
ized second order moments are given by:

µxx = αxx − α2
x = 30

2

3
− 25 =

17

3
(49)

µxy = αxy − αxαy = 22 − 20 = 2 (50)

µyy = αyy − α2
y = 18

2

3
− 16 =

8

3
. (51)

8



From these, according to [2, Appendix A] we can compute the parameters of an ellipse
with the same second order moments by calculating the eigenvalues and eigenvectors of the
following matrix:

1

4(µxxµyy − µ2
xy)

(
µyy −µxy

−µxy µxx

)
=

3

400

(
8 −6
−6 17

)
. (52)

The eigenvalues are given by the solutions of
∣∣∣∣∣ 8 − λ −6

−6 17 − λ

∣∣∣∣∣ = (8 − λ)(17 − λ) − 36 = λ2 − 25λ + 100 . (53)

Hence,λ1 = 5 andλ2 = 20. Therefore, the corresponding major axes of the ellipse have the
following lengths:a = 2/(

√
5 · 3/400) = 8

√
5/3 andb = 2/(

√
20 · 3/400) = 4

√
5/3. The

directions of the major axesa andb are given by(2, 1) and(1,−2), respectively, as is easily
obtainable by calculating the corresponding eigenvectors. Thus, the dominant directions of
this region were obtained correctly. Obviously, this can be done much easier for a rectangle.
However, the approach is valid for arbitrary shapes, as the next example shows.

Figure 2(a) displays a calibration target and Fig. 2(b) the upper-rightmost calibration mark
[6]. From this mark edges were extracted with sub-pixel precision by extracting bright lines
in the gradient image [7]. Figure 3(a) displays the resulting edges. In this example,103 edge
points were found, leading to a closed polygon with102 line segments. From these edge points,
the moments of the extracted shape can be calculated as

a = 566.32474

αr = 26.40761

αc = 28.17205

αrr = 770.99165

αrc = 729.00953

αcc = 824.30414

µrr = 73.62978

µrc = −14.94700

µcc = 30.63971 ,

wherer andc denote the row and column axis, respectively. According to [2, Appendix A],
the corresponding ellipse with the same moments has a major axis of lengtha = 35.39849, a
minor axis ofb = 20.37789, and the angle of the major axis to the column axis is given by
ϕ = 72.59321◦. Figure 3(b) displays this ellipse superimposed onto the extracted edge points.
As can be seen, the difference is hardly noticeable.

6 Conclusions

This paper has presented an explicit method to calculate the moments of arbitrary closed poly-
gons. Contrary to most implementations, which obtain the moments from discrete pixel data,
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(a) (b)

Figure 2: A calibration target (a) and one calibration mark (b).

(a) (b)

Figure 3: Extracted edges (a) and ellipse with the same moments (b).

in this approach moments are calculated by solely using the border of a region. This means
that moments of sub-pixel precise features can be computed without loss of accuracy. Fur-
thermore, since no explicit region needs to be constructed and because the border of a region
usually consists of much less points than the entire region, the approach is very efficient. The
presented algorithm will be used in the vision system described in [3, 4, 5] to approximate edges
by straight lines and ellipse segments using an approach similar to [8].
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A Calculation of the First Order Moments

The integral forαx in (33) can be decomposed into a sum by (25). Each term is given by:

∫
bi

−xy dx = −
1∫

0

xi(t)yi(t)x
′
i(t) dt

= −
1∫

0

(xi−1 + t(xi − xi−1))(yi−1 + t(yi − yi−1))(xi − xi−1) dt

= −(xi − xi−1)

1∫
0

xi−1yi−1 + t(xi−1(yi − yi−1) + yi−1(xi − xi−1))

+ t2(xi − xi−1)(yi − yi−1) dt

= −(xi − xi−1)
(
txi−1yi−1 +

1

2
t2(xiyi−1 − xi−1yi−1 + xi−1yi − xi−1yi−1)

+
1

3
t3(xi−1yi−1 − xi−1yi − xiyi−1 + xiyi)

∣∣∣∣1
t=0

)

= −(xi − xi−1)
(
xi−1yi−1 − xi−1yi−1 +

1

2
xi−1yi +

1

2
xiyi−1

+
1

3
xi−1yi−1 − 1

3
xi−1yi − 1

3
xiyi−1 +

1

3
xiyi

)

= −(xi − xi−1)
(1

3
xi−1yi−1 +

1

6
xi−1yi +

1

6
xiyi−1 +

1

3
xiyi

)

= −1

6
(xi − xi−1)(xi−1(2yi−1 + yi) + xi(yi−1 + 2yi)) . (54)

Therefore, we have

αx = − 1

6a

n∑
i=1

(xi − xi−1)(xi−1(2yi−1 + yi) + xi(yi−1 + 2yi)) . (55)

If we take a closer look at this equation we see that some terms in each term of the sum cancel,
while some terms telescope, i.e., cancel in consequtive terms of the sum. Thus, the equation
can be simplified to:

αx =
1

6a

n∑
i=1

(xi−1 + xi)(xi−1yi − xiyi−1) . (56)

The calculation ofαy proceeds in a completly analogous manner:

∫
bi

xy dy =

1∫
0

xi(t)yi(t)y
′
i(t) dt

= −
1∫

0

(xi−1 + t(xi − xi−1))(yi−1 + t(yi − yi−1))(yi − yi−1) dt

= · · ·
=

1

6
(yi − yi−1)(yi−1(2xi−1 + xi) + yi(xi−1 + 2xi)) . (57)
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Therefore, after eliminating canceling and telescoping terms, we have

αy =
1

6a

n∑
i=1

(yi−1 + yi)(xi−1yi − xiyi−1) . (58)

B Calculation of the Second Order Moments

According to (36), we have

∫
bi

−x2y dx = −
1∫

0

x2
i (t)yi(t)x

′
i(t) dt

= −
1∫

0

(xi−1 + t(xi − xi−1))
2(yi−1 + t(yi − yi−1))(xi − xi−1) dt

= −(xi − xi−1)

1∫
0

(x2
i−1 + 2txi−1(xi − xi−1) + t2(xi − xi−1)

2)

(yi−1 + t(yi − yi−1)) dt

= −(xi − xi−1)

1∫
0

x2
i−1yi−1 + tx2

i−1(yi − yi−1) + 2txi−1(xi − xi−1)yi−1

+ 2t2xi−1(xi − xi−1)(yi − yi−1) + t2(xi − xi−1)
2yi−1

+ t3(xi − xi−1)
2(yi − yi−1) dt

= −(xi − xi−1)

1∫
0

x2
i−1yi−1 + t(x2

i−1yi − x2
i−1yi−1 + 2xi−1xiyi−1 − 2x2

i−1yi−1)

+ t2(2xi−1xiyi − 2xi−1xiyi−1 − 2x2
i−1yi + 2x2

i−1yi−1

+ x2
i yi−1 − 2xi−1xiyi−1 + x2

i−1yi−1)

+ t3(x2
i yi − 2xi−1xiyi + x2

i−1yi − x2
i yi−1 + 2xi−1xiyi−1

− x2
i−1yi−1) dt

= −(xi − xi−1)
(
tx2

i−1yi−1 +
1

2
t2(−3x2

i−1yi−1 + x2
i−1yi + 2xi−1xiyi−1)

+
1

3
t3(3x2

i−1yi−1 − 2x2
i−1yi − 4xi−1xiyi−1 + 2xi−1xiyi

+ x2
i yi−1)

+
1

4
t4(−x2

i−1yi−1 + x2
i−1yi + 2xi−1xiyi−1 − 2xi−1xiyi

− x2
i yi−1 + x2

i yi)
∣∣∣∣1
t=0

)

= −(xi − xi−1)
(
x2

i−1yi−1 − 3

2
x2

i−1yi−1 +
1

2
x2

i−1yi + xi−1xiyi−1 + x2
i−1yi−1

− 2

3
x2

i−1yi − 4

3
xi−1xiyi−1 +

2

3
xi−1xiyi +

1

3
x2

i yi−1
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− 1

4
x2

i−1yi−1 +
1

4
x2

i−1yi +
1

2
xi−1xiyi−1 − 1

2
xi−1xiyi

− 1

4
x2

i yi−1 +
1

4
x2

i yi

)

= −(xi − xi−1)
(

1

4
x2

i−1yi−1 +
1

12
x2

i−1yi +
1

6
xi−1xiyi−1 +

1

6
xi−1xiyi

+
1

12
x2

i yi−1 +
1

4
x2

i yi

)

= − 1

12
(xi − xi−1)(x

2
i−1(3yi−1 + yi) + 2xi−1xi(yi−1 + yi)

+ x2
i (yi−1 + 3yi)) . (59)

As was the case above for the first order moments, some of the terms cancel and some telescope.
Therefore, we have

αxx =
1

12a

n∑
i=1

(x2
i−1 + xi−1xi + x2

i )(xi−1yi − xiyi−1) . (60)

By a completely analogous derivation we have

∫
bi

xy2 dy =

1∫
0

xi(t)y
2
i (t)y

′
i(t) dt

=

1∫
0

(xi−1 + t(xi − xi−1))(yi−1 + t(yi − yi−1))
2(yi − yi−1) dt

= · · ·
=

1

12
(yi − yi−1)(y

2
i−1(3xi−1 + xi) + 2yi−1yi(xi−1 + xi)

+ y2
i (xi−1 + 3xi)) . (61)

Therefore, again after removing all canceling and telescoping terms, we have

αyy =
1

12a

n∑
i=1

(y2
i−1 + yi−1yi + y2

i )(xi−1yi − xiyi−1) . (62)

In order to calculateαxy we need to compute the following terms:

−
∫
bi

xy2 dx and
∫
bi

x2y dy . (63)

Obviously, the first term is just the negative of (61) with(yi − yi−1) substituted by(xi − xi−1).
Analogously, the second term is the negative of (59) with(xi−xi−1) substituted by(yi−yi−1).
Thus, we have

1

4

∫
bi

−xy2 dx + x2y dy

=
1

48
(3x2

i−1y
2
i−1 + xi−1xiy

2
i−1 − 3xi−1xiy

2
i−1 − x2

i y
2
i−1 + 2x2

i−1yi−1yi + 2xi−1xiyi−1yi

13



− 2xi−1xiyi−1yi − 2x2
i yi−1yi + x2

i−1y
2
i + 3xi−1xiy

2
i − xi−1xiy

2
i − 3x2

i y
2
i

+ 3x2
i−1yi−1yi + x2

i−1y
2
i − 3x2

i−1y
2
i−1 − x2

i−1yi−1yi + 2xi−1xiyi−1yi + 2xi−1xiy
2
i

− 2xi−1xiy
2
i−1 − 2xi−1xiyi−1yi + x2

i yi−1yi + 3x2
i y

2
i − x2

i y
2
i−1 − 3x2

i yi−1yi)

=
1

48
(4x2

i−1yi−1yi + 2x2
i−1y

2
i − 4xi−1xiy

2
i−1 + 4xi−1xiy

2
i − 2x2

i y
2
i−1 − 4x2

i yi−1yi)

=
1

24
(2xi−1yi−1 + xi−1yi + xiyi−1 + 2xiyi)(xi−1yi − xiyi−1) . (64)

Therefore,

αxy =
1

24a

n∑
i=1

(2xi−1yi−1 + xi−1yi + xiyi−1 + 2xiyi)(xi−1yi − xiyi−1) . (65)
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