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Abstract. In this paper a method to extract curvilinear structures from digital
images is presented. The approach is based on differential geometric properties
of the image function. For each pixel, the second order Taylor polynomial is
computed by convolving the image with the derivatives of a Gaussian smoothing
kernel. Line points are required to have a vanishing gradient and a high curvature
in the direction perpendicular to the line. The use of the Taylor polynomial and the
Gaussian kernels leads to a single response of the filter to each line. Furthermore,
the line position can be determined with sub-pixel accuracy. Finally, the algorithm
scales to lines of arbitrary width. An analysis about the scale-space behaviour of
two typical line types (parabolic and bar-shaped) is given. From this analysis,
requirements and useful values for the parameters of the filter can be derived.
Additionally, an algorithm to link the individual line points into lines and junctions
that preserves the maximum number of line points is given. Examples on aerial
images of different resolution illustrate the versatility of the presented approach.

1 Introduction

Extracting lines in digital images is an important low-level operation in computer vision
that has many applications, especially in photogrammetric and remote sensing tasks.
There it can be used to extract linear features, like roads, railroads, or rivers, from
satellite or low resolution aerial imagery.

The published schemes to line detection can be classified into three categories. The
first approach detects lines by only considering the gray values of the image [4, 8]. Line
points are extracted by using purely local criteria, e.g., local gray value differences. Since
this will generate a lot of false hypotheses for line points, elaborate and computationally
expensive perceptual grouping schemes have to be used to select salient lines in the
image [5, 8]. Furthermore, lines cannot be extracted with sub-pixel accuracy.

The second approach is to regard lines as objects having parallel edges [9, 11]. In
a first step, the local direction of a line is determined for each pixel. Then two edge
detection filters are applied in the direction perpendicular to the line. Each edge detection
filter is tuned to detect either the left or right edge of the line. The responses of each
filter are combined in a non-linear way to yield the final response of the operator [9].
The advantage of this approach is that since the edge detection filters are based on
the derivatives of Gaussian kernels, the procedure can be iterated over the scale-space
parameterσ to detect lines of arbitrary widths. However, because special directional
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edge detection filters have to be constructed that are not separable, the approach is
computationally expensive.

In the third approach, the image is regarded as a functionz(x, y) and lines are de-
tected as ridges and ravines in this function by locally approximating the image function
by its second or third order Taylor polynomial. The coefficients of this polynomial are
usually determined by using the facet model, i.e., by a least squares fit of the polynomial
to the image data over a window of a certain size [6, 1, 7]. The direction of the line
is determined from the Hessian matrix of the Taylor polynomial. Line points are then
found by selecting pixels that have a high second directional derivative, i.e., a high
curvature, perpendicular to the line direction. The advantage of this approach is that
lines can be detected with sub-pixel accuracy without having to construct specialized
directional filters. However, because the convolution masks that are used to determine
the coefficients of the Taylor polynomial are rather poor estimators for the first and
second partial derivatives this approach usually leads to multiple responses to a single
line, especially when masks larger than 5× 5 are used to suppress noise. Therefore, the
approach does not scale well and cannot be used to detect lines that are wider than about
5 pixels.

In this paper an approach to line detection that uses the differential geometric
approach of the third category of operators will be presented. In contrast to those, the
coefficients of a second order Taylor polynomial are determined by convolving the image
with the derivatives of a Gaussian smoothing kernel. Because of this, the algorithm can
be scaled to lines of arbitrary width. Furthermore, the behaviour of the algorithm in
scale space is investigated for various types of lines. Finally, an algorithm to link the
detected line points into a topologically sound data structure of lines and junctions is
presented.

2 Detection of Line Points

2.1 Models for Lines in 1D

Many approaches to line detection consider lines in 1D to be bar-shaped, i.e., the ideal
line of width 2w and heighth is assumed to have a profile given by

fb(x) =
{

h, |x| ≤ w
0, |x| > w .

(1)

However, due to sampling effects of the sensor lines usually do not have this profile.
Figure 1 shows a profile of a line in an aerial image. As can be seen, no flat bar profile is
apparent. Therefore, in this paper lines are assumed to have an approximately parabolic
profile. The ideal line of width 2w and heighth is then given by

fp(x) =
{

h
(
1 − (x/w)2

)
, |x| ≤ w

0, |x| > w .
(2)

The line detection algorithm will be developed for this type of profile, but the implica-
tions of applying it to bar-shaped lines will be considered later on.
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Fig. 1.Profile of a line in an aerial image and approximating ideal line profile

2.2 Detection of Lines in 1D

In order to detect lines with a profile given by (2) in an imagez(x) without noise, it is
sufficient to determine the points wherez′(x) vanishes. However, it is usually convenient
to select only salient lines. A useful criterion for salient lines is the magnitude of the
second derivativez′′(x) in the point wherez′(x) = 0. Bright lines on a dark background
will havez′′(x) � 0 while dark lines on a bright background will havez′′(x) � 0.

Real images will contain a significant amount of noise. Therefore, the scheme
described above is not sufficient. In this case, the first and second derivatives ofz(x)
should be estimated by convolving the image with the derivatives of the Gaussian
smoothing kernel

gσ(x) =
1√
2πσ

e−
x2

2σ2 . (3)

The responses, i.e., the estimated derivatives, will be:

rp(x, σ, w, h) = gσ(x) ∗ fp(x)

=
h

w2

(
(w2 − x2 − σ2)(φσ(x + w) − φσ(x − w)) −
2σ2x(gσ(x + w) − gσ(x − w)) −
σ4(g′σ(x + w) − g′σ(x − w))

)
(4)

r′p(x, σ, w, h) = g′σ(x) ∗ fp(x)

=
h

w2

(−2x(φσ(x + w) − φσ(x − w)) +

(w2 − x2 − 3σ2)(gσ(x + w) − gσ(x − w)) −
2σ2x(g′σ(x + w) − g′σ(x − w)) −
σ4(g′′σ(x + w) − g′′σ(x − w))

)
(5)

r′′p (x, σ, w, h) = g′′σ(x) ∗ fp(x)

=
h

w2

(−2(φσ(x + w) − φσ(x − w)) −
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rp(x,σ,1,1)
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Fig. 2.Scale-space behaviour of the ideal linefp when convolved with the derivatives of Gaussian
kernels forx ∈ [−3, 3] andσ ∈ [0.2, 2]

4x(gσ(x + w) − gσ(x − w)) +
(w2 − x2 − 5σ2)(g′σ(x + w) − g′σ(x − w)) −
2σ2x(g′′σ(x + w) − g′′σ(x − w)) −
σ4(g′′′σ (x + w) − g′′′σ (x − w))

)
(6)

where

φσ(x) =

x∫
−∞

e−
t2

2σ2 dt . (7)

Equations (4)–(6) give a complete scale-space description of how the ideal line
profile fp will look like when it is convolved with the derivatives of Gaussian kernels.
Figure 2 shows the responses for an ideal line withw = 1 andh = 1 (i.e., a bright
line on a dark background) forx ∈ [-3, 3] andσ ∈ [0.2, 2]. As can be seen from this
figure,r′p(x, σ, w, h) = 0 ⇔ x = 0 for all σ. Furthermore,r′′p (x, σ, w, h) takes on its
maximum negative value atx = 0 for allσ. Hence it is possible to determine the precise
location of the line for allσ. Furthermore, it can be seen that because of the smoothing
the ideal line will be flattened out asσ increases. This means that if large values for
σ are used, the threshold to select salient lines will have to be set to an accordingly
smaller value. Section 4 will give an example of how this can be used in practice to
select appropriate thresholds.

For a bar profile without noise no simple criterion that depends only onz′(x) and
z′′(x) can be given sincez′(x) andz′′(x) vanish in the interval[−w, w]. However, if the
bar profile is convolved with the derivatives of the Gaussian kernel, a smooth function
is obtained in each case. The responses will be:

rb(x, σ, w, h) = h
(
φσ(x + w) − φσ(x − w)

)
(8)

r′b(x, σ, w, h) = h
(
gσ(x + w) − gσ(x − w)

)
(9)

r′′b (x, σ, w, h) = h
(
g′σ(x + w) − g′σ(x − w)

)
. (10)

Figure 3 shows the scale-space behaviour of a bar profile withw = 1 andh = 1 when
it is convolved with the derivatives of a Gaussian. It can be seen that the bar profile
gradually becomes “round” at its corners. The first derivative will vanish only atx = 0
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Fig. 3. Scale-space behaviour of the bar-shaped linefb when convolved with the derivatives of
Gaussian kernels forx ∈ [−3, 3] andσ ∈ [0.2, 2]

for all σ > 0 because of the infinite support ofgσ(x). However, the second derivative
r′′b (x, σ, w, h) will not take on its maximum negative value for smallσ. In fact, for
σ ≤ 0.2 it will be approximately zero. Furthermore, there will be two distinct minima
in the interval[−w, w]. It is, however, desirable forr′′b (x, σ, w, h) to exhibit a clearly
defined minimum atx = 0. After some lengthy calculations it can be shown that

σ ≥ w/
√

3 (11)

has to hold for this. Furthermore, it can be shown thatr′′b (x, σ, w, h) will have its
maximum negative response in scale-space forσ = w/

√
3. This means that the same

scheme as described above can be used to detect bar-shaped lines as well. However, the
restriction onσ must be observed. The same analysis could be carried out for other types
of lines as well, e.g., roof-shaped lines. However, it is expected that no fundamentally
different results will be obtained. For allσ above a certain value that depends on the
line type the responses will show the desired behaviour ofz′(0) = 0 andz′′(0) � 0
with z′′(x) having a distinct minimum.

The discussion so far has assumed that lines have the same contrast on both sides
of the line. This is rarely true in real images, however. For simplicity, only asymetrical
bar-shaped lines

fa(x) =




0, x < −w
1, |x| ≤ w
h, x > w

(12)

are considered (h ∈ [0, 1]). The corresponding responses will be:

ra(x, σ, w, h) = φσ(x + w) − (h − 1)φσ(x − w) (13)

r′a(x, σ, w, h) = gσ(x + w) − (h − 1)gσ(x − w) (14)

r′′a (x, σ, w, h) = g′σ(x + w) − (h − 1)g′σ(x − w) . (15)

The location wherer′a(x, σ, w, h) = 0, i.e., the position of the line, is given by

x = −σ2

2
ln(1 − h) . (16)
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This means that the line will be estimated in a wrong position when the contrast is
significantly different on both sides of the line. The estimated position of the line will
be within the actual boundaries of the line as long as

h ≤ 1 − e−
2w

σ2 . (17)

If σ = 1 andw = 1, for example, the estimated location of the line will be within the
actual line ifh ≤ 0.86466. This means that relatively large contrast differences can be
handled. Note, however, that ash→ 1, i.e., as the bar line profile is gradually transformed
into a step edge profile, the location of the linex → ∞. Fortunately,r′′a (x, σ, w, h) will
have a small value ash → 1, so by simple thresholding these erroneously located lines
can be eliminated.

2.3 Lines in 1D, Discrete Case

The analysis so far has been carried out for analytical functionsz(x). For discrete
signals only two modifications have to be made. The first one is the choice of how to
implement the convolution in discrete space. Integrated Gaussian kernels were chosen
as convolutions masks, mainly because they give automatic normalization of the masks
and a direct criterion on how many coefficients are needed for a given approximation
error. The integrated Gaussian is obtained if one regards the discrete imagezn as a
piecewise constant functionz(x) = zn for x ∈ (n − 1

2 , n + 1
2 ] and integrating the

continuous Gaussian kernel over this area. The convolution masks will be given by:

gn,σ = φσ(n + 1
2 ) − φσ(n − 1

2 ) (18)

g′n,σ = gσ(n + 1
2 ) − gσ(n − 1

2 ) (19)

g′′n,σ = g′σ(n + 1
2 ) − g′σ(n − 1

2 ) . (20)

The approximation error is set to 10−4 in each case. Of course, other schemes, like
Lindeberg’s discrete Gaussian derivative approximations [10] or a recursive computation
[3], are suitable for the implementation as well.

The second problem that has to be solved is how to determine the location of a line
in the discrete case. In principle, one could use a zero crossing detector for this task.
However, this would yield the position of the line only with pixel accuracy. In order to
overcome this, the second order Taylor polynomial ofzn is examined. Letr, r′, and
r′′ be the locally estimated derivatives at pointn of the image that are obtained by
convolving the image withgn, g′n, andg′′n. Then the Taylor polynomial is given by

p(x) = r + r′x +
1
2
r′′x2 . (21)

The position of the line, i.e., the point wherep′(x) = 0 is

x = − r′

r′′
. (22)

The pointn is declared a line point if this position falls within the pixel’s boundaries,
i.e., if x ∈ [− 1

2 , 1
2 ] and the second derivativer′′ is larger than a user-specified threshold.

Please note that in order to extract lines, the responser, which is the smoothed local
image intensity, is unnecessary and therefore does not need to be computed.
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2.4 Detection of Lines in 2D

Curvilinear structures in 2D can be modeled as curvess(t) that exhibit a characteristic
1D line profile (e.g.,fp orfb) in the direction perpendicular to the line, i.e., perpendicular
to s′(t). Let this direction ben(t). This means that the first directional derivative in the
directionn(t) should vanish and the second directional derivative should be of large
absolute value. No assumption can be made about the derivatives in the direction of
s′(t). For example, letz(x, y) be an image that results from sweeping the profilefp

along a circles(t) of radiusr. The second directional derivative perpendicular tos′(t)
will have a large negative value, as desired. However, the second directional derivative
alongs′(t) will also be non-zero.

The only problem that remains is to compute the direction of the line locally for
each image point. In order to do this, the partial derivativesrx, ry, rxx, rxy, andryy

of the image will have to be estimated. This can be done by convolving the image
with the appropriate 2D Gaussian kernels. The direction in which the second directional
derivative ofz(x, y) takes on its maximum absolute value will be used as the direction
n(t). This direction can be determined by calculating the eigenvalues and eigenvectors
of the Hessian matrix

H(x, y) =
(

rxx rxy

rxy ryy

)
. (23)

The calculation can be done in a numerically stable and efficient way by using one Jacobi
rotation to annihilate therxy term. Let the eigenvector corresponding to the eigenvalue
of maximum absolute value, i.e., the direction perpendicular to the line, be given by
(nx, ny) with ‖(nx, ny)‖2 = 1. As in the 1D case, a quadratic polynomial will be used
to determine whether the first directional derivative along(nx, ny) vanishes within the
current pixel. This point will be given by

(px, py) = (tnx, tny) , (24)

where

t = − rxnx + ryny

rxxn2
x + 2rxynxny + ryyn2

y

. (25)

Again, (px, py) ∈ [− 1
2 , 1

2 ] × [− 1
2 , 1

2 ] is required in order for a point to be declared a
line point. As in the 1D case, the second directional derivative along(nx, ny), i.e., the
maximum eigenvalue, can be used to select salient lines.

2.5 Examples

Figure 4(b) gives an example of the results obtainable with the presented approach.
Here, bright line points were extracted from the input image given in Fig. 4(a). This
image is part of an aerial image with a ground resolution of 2 m. Figure 4(c) shows the
results that were obtained using the facet model. In both cases the sub-pixel location
(px, py) of the line points and the direction(nx, ny) perpendicular to the line are
symbolized by vectors. The strength of the line, i.e., the absolute value of the second
directional derivative along(nx, ny) is symbolized by gray values. Line points with
high saliency have dark gray values.
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(a) Input Image (b) New approach (σ = 1.5) (c) Facet model (7× 7)

Fig. 4.Line points detected in image (a) using the new approach (b) and using the facet model (c)

From Fig. 4 it can be seen that in the approach presented here there will always be
a single response to a given line. When the facet model is used, multiple responses are
quite common. Note, for example, the line that enters the image in the middle of the left
hand side. This makes linking the individual line points into lines rather complicated.
In [1] the response of the operator is thinned before linking to get around this problem.
However, this operation throws away useful information since diagonal lines will be
thinned unnecessarily. In the new approach the linking will be considerably easier and
no thinning operation is needed.

3 Linking Line Points into Lines

After individual line pixels have been extracted, they must be linked into lines. In order
to facilitate later mid-level vision processes, e.g., perceptual grouping, the resulting data
structure should contain explicit information about the lines as well as the junctions
between them. This data structure should be topologically sound in the sense that junc-
tions are represented by points and not by extended areas as in [1]. Furthermore, since
the presented approach yields only single responses to each line, no thinning operation
needs to be performed prior to linking. This assures that the maximum information
about the line points will be present in the data structure.

Since there is no suitable criterion to classify the line points into junctions and
normal line points in advance without having to resort to extended junction areas,
another approach has been adopted. From the algorithm in Sect. 2 the following data are
obtained for each pixel: the orientation of the line(nx, ny) = (cos α, sin α), a measure
of strength of the line (the second directional derivative in the direction ofα), and the
sub-pixel location of the line(px, py).

Starting from the pixel with maximum second derivative, lines will be constructed
by adding the appropriate neighbour to the current line. Since it can be assumed that the
line point detection algorithm will yield a fairly accurate estimate for the local direction
of the line, only three neighbouring pixels that are compatible with this direction are
examined. For example, if the current pixel is(cx, cy) and the current orientation
of the line is in the interval[−22.5◦, 22.5◦], these points will be(cx + 1, cy − 1),
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(a) New approach (σ = 1.5) (b) Facet model (7× 7)

Fig. 5.Linked lines detected using the new approach (a) and using the facet model (b). Lines are
drawn in white while junctions are displayed as black crosses.

(cx + 1, cy), and(cx + 1, cy + 1). The choice about the appropriate neighbour to add
to the line is based on the distance between the respective sub-pixel locations and the
angle difference of the two points. Letd = ‖p2 − p1‖2 be the distance between the
two points andβ = |α2 − α1|, β ∈ [0, π/2], be the angle difference between those
points. The neighbour that is added to the line is the one that minimizesd + wβ. In the
current implementation,w = 1 is used. This algorithm will select each line point in the
correct order. At junction points, it will select one branch to follow without detecting
the junction. This will be detected later on. The algorithm of adding line points is
continued until no more line points are found in the current neighbourhood or until the
best matching candidate is a point that has already been added to another line. If this
happens, the point is marked as a junction, and the line that contains the point is split
into two lines at the junction point.

New lines will be created as long as the starting point has a second directional
derivative that lies above a certain, user-selectable upper threshold. Points are added
to the current line as long as their second directional derivative is greater than another
user-selectable lower threshold. This is similar to a hysteresis threshold operation [2].

The contour linking approach presented here is similar to that given in [6]. However,
there the best neighbour is determined from a neighbourhood that does not depend on
the current direction of the line. Furthermore, the author does not mention whether
explicit junction information is generated by the algorithm.

With a slight modification the algorithm is able to deal with multiple responses if
it is assumed that with the facet model approach no more than three parallel responses
are generated. No such case has been encountered for mask sizes of up to 13× 13.
Under this assumption, the algorithm can proceed as above. Additionally, if there are
multiple responses to the line in the direction perpendicular to the line (e.g., the pixels
(cx, cy −1) and(cx, cy +1) in the example above), they are marked as processed if they
have roughly the same orientation as(cx, cy). The termination criterion for lines has to
be modified to stop at processed line points instead of line points that are contained in
another line.

Figure 5 shows the result of linking the line points in Fig. 4 into lines. The results
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(a) Input image (b) Detected lines

Fig. 6. Salient lines detected in the complete aerial image

are overlaid onto the original image. In this case, the upper threshold was set to zero, i.e.,
all lines, no matter how faint, were selected. If an upper threshold of 5 were used only
the salient lines would be selected. It is apparent that the lines obtained with the new
approach are much smoother than the lines obtained with the facet model. Furthermore,
the geometric accuracy in case of unequal contrast is better with the new approach.
Note, for example, the line that enters the image at the bottom right corner. This line has
quite a different contrast on both sides. With the new approach the line is within half
a pixel of the true location of the line while with the facet model it lies more than one
pixel from the true line.

4 Further Examples

In this section some more examples of the versatility of the proposed approach will be
given. Figure 6(a) shows the complete aerial image from which the image in Fig. 4 was
taken. In this example,σ = 1.5 and only bright lines that had a second derivative with
an absolute value larger than 8 were selected. The lower threshold for the hysteresis was
set to 3. It can be seen from Fig. 6(b) that the algorithm is able to extract most of the
salient lines from the image.

Figure 7 shows that the presented approach scales very well. In Fig. 7(a) an aerial
image with a ground resolution of≈ 25 cm is displayed. The lines in this image are
approximately bar-shaped. If 50 pixel wide lines are to be detected, i.e., ifw = 25,
according to (11), aσ ≥ 14.4337 should be selected. In fact,σ = 15 was used for this
image. If lines with a contrast ofh ≥ 70 are to be selected, (10) shows that these lines
will have a second derivative of≈ −0.10316. Therefore, the threshold for the absolute
value of the second derivative was set to 0.1. The lower threshold was set to 0.025.
Figure 7(b) displays the lines that were detected with these parameters. As can be seen,
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(a) Input image (b) Detected lines

Fig. 7. Salient lines detected in a high resolution aerial image

all of the roads were detected. Most of the lines in this image have different contrasts
on both sides of the line. Therefore it is not surprising that the detected lines deviate
slightly from the true centers of the lines. This is especially true for the line in the bottom
right corner of the image. However, even this line is detected within the boundaries of
the actual line.

5 Conclusions

In this paper a low-level approach to the extraction of curvilinear structures from images
was presented. An analysis of the scale-space behaviour of two distinct line types
was carried out. The results of this analysis help tremendously in the selection of the
appropriate parameters for the algorithm. The advantages of this approach are that line
extraction is done using only the first and second directional derivatives of the image.
No specialized directional filters are needed. This makes the approach computationally
efficient. For instance, the 520× 560 image in Fig. 6 was processed in 8 seconds on
a HP 735 workstation. Furthermore, since the derivatives are estimated by convolving
the image with the derivatives of a Gaussian smoothing kernel, only a single response
is generated for each line. The algorithm has no problems extracting line points where
three or more lines meet.

An algorithm has been presented that links the extracted line points into a data
structure containing lines and junctions. Although the algorithm itself does not attempt
any perceptual grouping, the data structure that is generated will facilitate this in a
higher-level step.

The presented approach shows two fundamental limitations. Firstly, if a line has
highly different contrasts on each side oft the line, the position of the line will be
estimated in a different position than the actual center of the line. This is a fundamental
limitation of other approachesas well [9, 1]. In this paper, an analysis was carried out that
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shows how the position will vary with differing contrasts. Secondly, only a combined
estimate of the width and height of the line is returned. This means, that narrow lines
with high contrast will result in similar responses as broad lines with low contrast. This
contrasts with the approach given in [9] that returns an estimate of the width of the line
as well as the height of the line at the expense of computational complexity. However,
if only lines of a certain range of widths are present in an image, the combined estimate
presents no fundamental limitation since it will then depend only on the contrast of the
lines.
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