
Improvements for Color Dithering

Uwe Meyer-Gruhl, Carsten Steger
Forschungsgruppe Bildverstehen (FG BV)

Informatik IX, Technische Universiẗat München
Orleansstr. 34, 81667 M̈unchen, Germany

E-mail: {meyergru|stegerc}@informatik.tu-muenchen.de

Abstract

This paper discusses possible extensions of error-diffusion
dithering algorithms for color devices that give a more ac-
curate reproduction of colors than previous algorithms. The
main difference of the method presented here and others is
that usually color channels are regarded separately, whereas
we look at them together as one color value that is used to
select the closest output color. This alone results in more
accurate color reproduction and less ink consumption. In
addition, with the advent of better printing technology,error-
diffusion dithering can be used to avoid loss of resolution in
favor of more levels of gray or color.

Introduction

In the last few years computer peripherals that can support
color, like ink-jet printers and high quality video boards,
have become inexpensive. However, the software drivers
used for such units often do not handle them in the best
possible way.

In this article, the figures are reproduced in black and
white, but later in this proceedings book is a color insert
including the same figures printed with the techniques dis-
cussed here.

Other methods1 that try to render digital images on print-
ers in an accurate manner suffer from the same deficiency,
despite the fact that some of them use very elaborate schemes
of calibration.

A large amount of literature on black-and-white halfton-
ing exists,2, 3, 4, 5, 6, 7 but the problem of printing on a
color printer is rarely addressed. Most authors (notably
Ulichney2) give the advice that color dithering should be
done separately for each output channel. For printers that
support theCMYK-color-model this procedure leads to the
problems described in the next section.

The Problem

PostScript, as a typical example, takes the following steps
when rendering a color image on aCMYK 4-bit device (if
the colors have been specified in theRGBcolor space)8:

1. ConvertRGB−→ CMY, i.e.C = 1 − R, M = 1 − G,
Y = 1 − B.

2. Look for the minimum ofC, M, andY, and call itK.

3. Calculate the black generationBG(k) and the un-
dercolor removalUCR(k), which both can be user-
supplied functions that map[0, 1] 7→ [0, 1]. TakeC′ =
C−UCR(K), M′ = M−UCR(K), Y′ = Y−UCR(K),
andK′ = BG(K). The black portion is subtracted from
all colors and applied directly. This is done to usereal
black instead of aCMY mixture, which visually turns
out brownish or greenish. In most cases gray levels
reproduced using aCMY mixture appear non-gray, to
say the least.

4. Apply optional transfer functions to eachC′, M′, Y′,
andK′ channel.

5. Halftone the results in four discrete 1-bit device color
space channels (DeviceCMYKin PostScript terminol-
ogy) that consist of dot screens, which are usually ro-
tated to angles of 15◦, 75◦, 0◦, and 45◦. The dot screens
are rotated at different angles to get the best visual im-
pression and to reduce moiré patterns. The screen for
black is rotated 45◦ because the human visual system
is least sensitive to lattices in this orientation (the least
visible color screen, yellow, is not rotated). Because
the cosines and sines of these angles are irrational num-
bers, the centers of the halftone-dots in one channel are
distributed statistically with respect to any other chan-
nel.

Say, for example, we want to output a square which has
RGB= (0.5,0.5,0.0). This would beCMY = (0.5,0.5,1.0).
The black fraction in that color is 0.5, so thatCMYK =
(0.0,0.0,0.5,0.5) results (provided thatBG(k) = k and
UCR(k) = k for simplicity).

Remember, we want a color that is 50% yellow and 50%
black, a dark yellow. We could have asked PostScript for
that color directly, had we used theCMYK color space in
the first place.

PostScript now has two relevant dot screens (Y andK),
in each of which 50% of all dots are set. Since these dot
screens are rotated, the distribution is purely statistical. Thus
we have four possible combinations:



dots printed black

dots printed white dots printed yellow

dots printed black and yellow

Figure 1: Clustered dot ordered dither of a color that hasCMYK =
(0,0,0.5,0.5)with halftone screens at 45◦ (black) and 0◦ (yellow).

Black Yellow Probability Resulting color
0 0 25% White
0 1 25% Yellow
1 0 25% Black
1 1 25% Black (!)

Figure 1 shows this effect with a clustered-dot halftone-
screen where the centers of the clustered dots are spaced
4 pixels apart. The relevant dither matrices were taken
from Ulichney’s book.2 This example slightly simplifies the
situation because PostScript goes to extraordinary lengths
to ensure that the centers of the clustered dots are spaced
exactly 4 dots apart. In figure 1 the centers of the dots of
the screen at 0◦ (the screen for the yellow-component of the
output) are slightly more than 4 dots apart (4.2426 dots) to
simplify the presentation. Nevertheless this example shows
the kind and magnitude of the error that occurs.

The resulting color now hasCMYK = (0.0,0.0,0.25,0.5),
which is much less saturation than desired. In addition to
this, the use of dot screens actually limits the resolution in
favor of more different levels of color.

Stone et al.1 present an elaborate procedure to print color
images that are as close as possible to the original images.
The autors measure the color gamut of the monitors and the
printers used. For the Cromalin printer gamut the authors
note1: “This indicates that the most saturated colors are
darker than those in the monitor gamut and less saturated
that the monitor colors.” For the thermal printer (a Panasonic
EMCP500 thermal transfer printer with a resolution of 400
DPI) they write: “The gamut is slightly narrower, indicating
that the colors overall are less saturated.” Our analysis shows
that a result like this was to be expected if printing is done

with independenthalftone screens.

Wrong Solutions

In the PostScript color model, there are two possible cures
for this situation:

1. Use of other functions than identity forBG(k) and
UCR(k), but this is far from perfect and does not rem-
edy the situation when the colors were specified using
theCMYK color space in the first place.

2. Modification of the transfer functions forC, M, Y, and
K. However, (according to the PostScript manuals) it is
not possible to use any other information than the color
value for the channel itself in the transfer function.
If we used a function like

√
k for the black channel,

for example, to make our test color brighter, the result
would be a distorted gray response curve for “pure”
grays. This holds likewise for emphasizing theCMY
color channels.

Possible Alternatives

We chose to use a modified Floyd-Steinberg error diffusion
dithering algorithm that is modeled after the error diffusion
algorithm given by Ulichney.2 The main reason for this was
that no loss in resolution results. However, the modifications
needed are not as straightforward as one might expect.

The simplest extension would be to use a 24-bit color
space, and apply a FS-algorithm in the separateRGB or
CMYKchannels. This leads to the very problems described
above.

The main insight is to notice that the channels cannot
be handled separately. The choice is one of eight col-
ors (cyan, magenta, yellow, red, green, blue, white, black)
which can be reproduced by the printer. Actually, because
colorspaces are inherently three-dimensional, only three of
the fourCMYKbits carry information (23 = 8). Thus, black
is merely a linear combination of other colors in theCMY
model.

Some problems remain, even if the decision function
looks like this:

typedef enum {
BLACK = 0, BLUE = 1,
GREEN = 2, CYAN = 3,
RED = 4, MAGENTA = 5,
YELLOW = 6, WHITE = 7

} PrinterColor;

PrinterColor Color(R,G,B)
{

return (R > 0.5) << 2 +
(G > 0.5) << 1 + (B > 0.5);

}

Statistically, all eight colors would be equally probable.
Furthermore, color is wasted, since no undercolor removal
is done, except for exact black (1/8).

Suppose there is a gray portion covering a part of the
page, which hasRGB = (0.5,0.5,0.5). If by chance (say
a nearby red area or a random error) a red pointRGB =



(a) Synthetic test image (b) Faulty rendering

(c) Improved rendering (d) Clustered-dot rendering

Figure 2: Synthetic test image and different renderings

(1.0,0.0,0.0) is used in a line, the next pointhasto be cyan
RGB= (0.0,1.0,1.0), to compensate for the error. This leads
to another red point in the next step, which leads to a cyan
one in the next and so on. . .

The same thing can happen if we start out with blue (then
the color changes between blue and yellow) or with green
(green/magenta). All those combinations should give the
same visual result as a black/white change, i.e. a 50% gray
area.

In fact, they do not, as everyone knows.9 Moreover,
these unwanted combinations use three times the color a
black/white checkboard pattern does (consider two pixels,
then a black/white pattern would use one dot per two pixels,
whereas a red/cyan uses three, because red is magenta plus
yellow). Furthermore, even more expensive colors (black
tends to be cheaper) are used.

This problem does not only apply to gray levels, but also
to “real” colors. One can end up in mixing blue and green
(both use two dots/pixel) to achieve a 50% cyan (which uses
only half a dot on average)!

To illustrate the erroneous behaviour of this approach, we
have included a synthetic test image in figure 2(a) and a
rather coarse rendering of it in figure 2(b). The algorithm
used is the blue noise error diffusion scheme2applied to each
channel separately. Thresholding is done in theCMY color
space and the error is distributed in theRGBcolor space.
The error buffer is initialized with zeroes. Note that the gray
ramp is rendered using every color available to the printer.
In the second ramp red and blue are used erroneously, while
in the fourth ramp green and blue are used wrongly. Each
of these colors is printed by using two colors, so a lot of ink
is wasted in the second and fourth ramp, and even more in
the third ramp.

Viable Solutions

One can, however, do the undercolor removal in thelaststep
of the algorithm. When the desired color (in our example
RGB = (0.5,0.5,0.5)) is examined more closely, it turns
out that the non-colored portion in it is far greater than the
colored portion. So, if in the FS-algorithm the desired color
after calculating the previous errors isRGB= (0.6,0.4,0.4),
then the black part is 0.4, whereas the red part is only 0.2.
In that case, one might better pick black than the color in
question. Note, however, that theessentialaspect of our
approach is to regard the color channels as one color value,
not separate signals that can be dithered independently. This
leads to:

PrinterColor Color(R,G,B)
{

C = 1.0 - R;
M = 1.0 - G;
Y = 1.0 - B;
K = min(C,M,Y);
C = C - K;
M = M - K;
Y = Y - K;
if (max(C,M,Y,K) == K)

return (K > 0.5 ? BLACK : WHITE);
else

return (R > 0.5) << 2 +
(G > 0.5) << 1 + (B > 0.5);

}

In our approach an implicit assumption is made: that the
dots for all channels are in the same spot, which might not be
true for offset printing with color separations, but it seems to
be true for most medium-resolution ink-jet printers like the
Hewlett-Packard DeskJet series. The model we have tested
was the 550C, and strangely enough, the manufacturer has
decided to remove support for theCMYK color model in
their newest product, the 1200C. Now onlyCMY is used,
but resulting “black” is replaced by “real” black. Printer
drivers that do not take this into account will produce the
errors mentioned above, including excessive ink usage.

Tests have shown that with our scheme, the use ofCMY
can be drastically reduced (each color from 37.5% to 25%).
Some more black is used (25% instead of 12.5%) instead
for color images. The figures above refer to statistically
random images, first dithered inCMY, replacing black with
K, which results in 12.5% black pixels (and 37.5%C, M,
andY), if a uniform and independent distribution with 50%
in all CMY channels is used. Then our approach was tested,
which results in 25% for each channel.

The visual impression is even better, since the greenish
color in black parts of the printed images disappears com-
pletely. Figure 2(c) shows the results of our new approach.
Here, the algorithm is the same as above, including the ini-
tialization of the error buffer to all zeroes, except for the
different selection logic in the thresholding part. In the first
ramp no colors other than the required colors (i.e. yellow,
black, white, and blue) are used. The same holds for the
second and third ramp. Only the required colors are used. In
the fourth ramp four dots are printed white instead of black



or cyan. This means that a total of four dots are printed in
wrong colors, which equals≈0.1% of all dots printed.

Sadly, this approach can not be applied to PostScript di-
rectly in form of a file to be downloaded to the PostScript
interpreter, since the PostScript system does not allow this.
Changes have to be made in the driver stage itself. We have
done this for Display PostScript on a NeXT computer, using
the 24-bitRGBcolor model and then dithering forCMYK.
Additionally, a printer driver for a HP DeskJet 550C was de-
veloped for the GhostScript interpreter, and is in use within
our department. However, Tektronix has recently intro-
duced a new printer, the Phaser 340, that has an original
Adobe PostScript interpreter, but seemingly uses an error
diffusion algorithm for output. We were not able to find out
whether this was made possible by new features provided
by PostScript or by modifications done by Tektronix in the
driver stage.

Improvements and Future Work

One could think of a way to even calibrate the output within
the limitations of the output device and media: If one of
the eight used colors turns out to be not quite as good as it
should, it should suffice to just change the value used in the
FS-algorithm to correct the error.

Suppose that the red color has a light touch of blue in
it, then the value for a red point would be changed from
(1.0,0.0,0.0) to, say, (1.0,0.0,0.1). The error-diffusion capa-
bilities of the FS-algorithm would correct the error accord-
ingly, although a “full” red could never be achieved.

One has to note that we made certain simplifications
throughout this article. We did not mention, e.g., that a
transfer functionmust be applied to allC, M, Y, and K
channels in all real-world applications, because when a dot
from an ink-jet printer is not ideally rectangular, but circular,
and bigger than the cell it should occupy, a black-and-white
checkboard pattern would result in a nearly black output.
These transfer functions can be determined e.g. by a proce-
dure similar to that given by Stone et al.1

Schemes that take the size of the dots printed into account
and determine the area covered with each color may not
work. Clapper and Yule10 show that because of multiple
internal reflections in the paper the intensity that results
from halftoning depends in a nonlinear manner on the area
that is covered by the paint. In an extreme case, a page
whose area is covered by 50% black ink (as opposed to 50%
black dots) can look as if the intensity was 85% black.

Because some printers can only print clustered dots (some
laser printers still fall into this category), experiments were
carried out to determine whether it is feasible to extend our
scheme to clustered-dot printing. Figure 2(d) shows a result
that was obtained by using a modified version of the smooth
dot diffusion algorithm given by Knuth7 that uses the color
selection scheme above. This algorithm was chosen be-
cause it allows clustered-dot printing with an error diffusion
algorithm. The example shows that no pixel is printed with
an inappropriate color and that the dots are clustering rather
well. Unfortunately, since this printing scheme roughly
corresponds to printing with halftone screens that are all
oriented in a 45◦-direction, it can happen that the above
mentioned moiŕe patterns occur. We do not know at the
moment how this effect can be avoided, since by using other

class matrices for each channel, we would lose the ability
to process every channel of every pixel at the same instant,
and therefore the ability to consider each color at every pixel
as a whole. But, fortunately, for most pictures the patterns
do not seem to be noticeable enough to disturb the viewer.
Nevertheless, further research has to be carried out to obtain
a perfectly working algorithm for clustered-dot dithering for
color printers. However, we will not pursue these thoughts
further because with the advent of better printing technol-
ogy, error-diffusion dithering can be used on almost any
printer. Arguments like Ulichney’s2 that clustered-dot or-
dered dither has to be used with laser printers because of
their inability to print single pixels will probably not hold
much longer.

References

1. Maureen C. Stone, William B. Cowan, John C. Beatty, Color
Gamut Mapping and the Printing of Digital Color Images,
ACM Transactions on Graphics, Vol. 7, No. 4, October 1988,
pp. 249–292.

2. Robert Ulichney,Digital Halftoning, MIT Press, Cambridge,
Massachusetts, USA, 1987.

3. J. Sullivan, R. Miller, G. Pios, Image Halftoning using a
visual model in error diffusion,Journal of the Optical Society
of America A, Vol. 10, No. 8, August 1993, pp. 1714–1724.

4. Theophano Mitsa, Kevin J. Parker, Digital halftoning tech-
nique using a blue-noise mask,Journal of the Optical Society
of America A, Vol. 9, No. 11, November 1992, pp. 1920–1929.

5. J. Sullivan, L. Ray, R. Miller, Design of Minimum Visual
Modulation Halftone Patterns,IEEE Transactions on Systems,
Man, and Cybernetics, Vol. 21, No. 1, January/February 1991,
pp. 33–38.

6. Reiner Eschbach, Keith T. Knox, Error-diffusion algorithm
with edge enhancement,Journal of the Optical Society of
America A, Vol. 8, No. 12, December 1991, pp. 1844–1850.

7. Donald E. Knuth, Digital Halftones by Dot Diffusion,ACM
Transactions on Graphics, Vol. 6, No. 4, October 1987,
pp. 245–273.

8. Adobe Systems Inc.,PostScript Language Reference Manual,
Second Edition, Addison Wesley, Reading, Massachusetts,
USA, 1990.

9. Michael G. Lamming, Warren L. Rhodes, A Simple Method
for Improved Color Printing of Monitor Images,ACM Trans-
actions on Graphics, Vol. 9, No. 4, October 1990, pp. 345–
375.

10. F. R. Clapper, J. A. C. Yule, The Effect of Multiple Internal
Reflections on the Densities of Half-tone Prints on Paper,
Journal of the Optical Society of America, Vol. 43, No. 7, July
1953, pp. 600–603.



(a) Synthetic test image (Postscript 600 DPI) (b) Faulty Floyd-Steinberg rendering

(c) Improved Floyd-Steinberg rendering (d) 300 DPI improved rendering

(e) Clustered-dot rendering (f) Real image (Improved FS 300 DPI)

Illustration of color renderings using different methods


	Abstract
	Introduction
	The Problem
	Wrong Solutions
	Possible Alternatives
	Viable Solutions
	Improvements and Future Work
	References

